語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lieb-Robinson bounds for multi-commu...
~
Bru, J.-B.
FindBook
Google Book
Amazon
博客來
Lieb-Robinson bounds for multi-commutators and applications to response theory
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Lieb-Robinson bounds for multi-commutators and applications to response theory/ by J.-B. Bru, W. de Siqueira Pedra.
作者:
Bru, J.-B.
其他作者:
Pedra, W. de Siqueira.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
vii, 109 p. :ill., digital ;24 cm.
內容註:
Introduction -- Algebraic Quantum Mechanics -- Algebraic Setting for Interacting Fermions on the Lattice -- Lieb-Robinson Bounds for Multi-Commutators -- Lieb-Robinson Bounds for Non-Autonomous Dynamics -- Applications to Conductivity Measures.
Contained By:
Springer eBooks
標題:
Quantum theory. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-45784-0
ISBN:
9783319457840
Lieb-Robinson bounds for multi-commutators and applications to response theory
Bru, J.-B.
Lieb-Robinson bounds for multi-commutators and applications to response theory
[electronic resource] /by J.-B. Bru, W. de Siqueira Pedra. - Cham :Springer International Publishing :2017. - vii, 109 p. :ill., digital ;24 cm. - SpringerBriefs in mathematical physics,v.132197-1757 ;. - SpringerBriefs in mathematical physics ;v.13..
Introduction -- Algebraic Quantum Mechanics -- Algebraic Setting for Interacting Fermions on the Lattice -- Lieb-Robinson Bounds for Multi-Commutators -- Lieb-Robinson Bounds for Non-Autonomous Dynamics -- Applications to Conductivity Measures.
Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions. In particular, the existence of fundamental solutions is shown for those (non-autonomous) C*-dynamical systems for which the usual conditions found in standard theories of (parabolic or hyperbolic) non-autonomous evolution equations are not given. In mathematical physics, bounds on multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting particles to external perturbations. These bounds are derived for lattice fermions, in view of applications to microscopic quantum theory of electrical conduction discussed in this book. All results also apply to quantum spin systems, with obvious modifications. In order to make the results accessible to a wide audience, in particular to students in mathematics with little Physics background, basics of Quantum Mechanics are presented, keeping in mind its algebraic formulation. The C*-algebraic setting for lattice fermions, as well as the celebrated Lieb-Robinson bounds for commutators, are explained in detail, for completeness.
ISBN: 9783319457840
Standard No.: 10.1007/978-3-319-45784-0doiSubjects--Topical Terms:
516552
Quantum theory.
LC Class. No.: QC174.12
Dewey Class. No.: 530.12
Lieb-Robinson bounds for multi-commutators and applications to response theory
LDR
:02549nmm a2200325 a 4500
001
2089318
003
DE-He213
005
20161201113634.0
006
m d
007
cr nn 008maaau
008
171013s2017 gw s 0 eng d
020
$a
9783319457840
$q
(electronic bk.)
020
$a
9783319457833
$q
(paper)
024
7
$a
10.1007/978-3-319-45784-0
$2
doi
035
$a
978-3-319-45784-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.12
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
082
0 4
$a
530.12
$2
23
090
$a
QC174.12
$b
.B886 2017
100
1
$a
Bru, J.-B.
$3
3219815
245
1 0
$a
Lieb-Robinson bounds for multi-commutators and applications to response theory
$h
[electronic resource] /
$c
by J.-B. Bru, W. de Siqueira Pedra.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
vii, 109 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematical physics,
$x
2197-1757 ;
$v
v.13
505
0
$a
Introduction -- Algebraic Quantum Mechanics -- Algebraic Setting for Interacting Fermions on the Lattice -- Lieb-Robinson Bounds for Multi-Commutators -- Lieb-Robinson Bounds for Non-Autonomous Dynamics -- Applications to Conductivity Measures.
520
$a
Lieb-Robinson bounds for multi-commutators are effective mathematical tools to handle analytic aspects of infinite volume dynamics of non-relativistic quantum particles with short-range, possibly time-dependent interactions. In particular, the existence of fundamental solutions is shown for those (non-autonomous) C*-dynamical systems for which the usual conditions found in standard theories of (parabolic or hyperbolic) non-autonomous evolution equations are not given. In mathematical physics, bounds on multi-commutators of an order higher than two can be used to study linear and non-linear responses of interacting particles to external perturbations. These bounds are derived for lattice fermions, in view of applications to microscopic quantum theory of electrical conduction discussed in this book. All results also apply to quantum spin systems, with obvious modifications. In order to make the results accessible to a wide audience, in particular to students in mathematics with little Physics background, basics of Quantum Mechanics are presented, keeping in mind its algebraic formulation. The C*-algebraic setting for lattice fermions, as well as the celebrated Lieb-Robinson bounds for commutators, are explained in detail, for completeness.
650
0
$a
Quantum theory.
$3
516552
650
1 4
$a
Physics.
$3
516296
650
2 4
$a
Mathematical Methods in Physics.
$3
890898
650
2 4
$a
Mathematical Physics.
$3
1542352
650
2 4
$a
Functional Analysis.
$3
893943
650
2 4
$a
Condensed Matter Physics.
$3
1067080
650
2 4
$a
Quantum Information Technology, Spintronics.
$3
1067172
700
1
$a
Pedra, W. de Siqueira.
$3
3219816
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematical physics ;
$v
v.13.
$3
3219817
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-45784-0
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9315490
電子資源
11.線上閱覽_V
電子書
EB QC174.12
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入