語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big data and learning analytics in h...
~
Kei Daniel, Ben.
FindBook
Google Book
Amazon
博客來
Big data and learning analytics in higher education = current theory and practice /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Big data and learning analytics in higher education/ edited by Ben Kei Daniel.
其他題名:
current theory and practice /
其他作者:
Kei Daniel, Ben.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xx, 272 p. :ill., digital ;24 cm.
內容註:
Theory and Practice -- Global challenges in higher education -- Technological trends in higher education -- Data Science -- Big data in higher education -- Learning analytics -- Big Data Platforms and Systems -- Analytical platforms -- Systems -- Databases -- Tools -- Visualization -- Dashboards -- Measurement and Methodologies -- Measures, indicators, metrics -- Data mining techniques -- Data capture -- Data tracking -- Metadata -- Methodologies -- Institutional Best Practices -- Case studies/best practices -- Polyicy implication on learning, teaching, and research -- Challenges and opportunities -- Future Trends -- Lessons learned -- Future perspectives in big data -- Conclusions.
Contained By:
Springer eBooks
標題:
Big data. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-06520-5
ISBN:
9783319065205
Big data and learning analytics in higher education = current theory and practice /
Big data and learning analytics in higher education
current theory and practice /[electronic resource] :edited by Ben Kei Daniel. - Cham :Springer International Publishing :2017. - xx, 272 p. :ill., digital ;24 cm.
Theory and Practice -- Global challenges in higher education -- Technological trends in higher education -- Data Science -- Big data in higher education -- Learning analytics -- Big Data Platforms and Systems -- Analytical platforms -- Systems -- Databases -- Tools -- Visualization -- Dashboards -- Measurement and Methodologies -- Measures, indicators, metrics -- Data mining techniques -- Data capture -- Data tracking -- Metadata -- Methodologies -- Institutional Best Practices -- Case studies/best practices -- Polyicy implication on learning, teaching, and research -- Challenges and opportunities -- Future Trends -- Lessons learned -- Future perspectives in big data -- Conclusions.
This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns.
ISBN: 9783319065205
Standard No.: 10.1007/978-3-319-06520-5doiSubjects--Topical Terms:
2045508
Big data.
LC Class. No.: LB2326.3
Dewey Class. No.: 378.0072
Big data and learning analytics in higher education = current theory and practice /
LDR
:02311nmm a2200313 a 4500
001
2087569
003
DE-He213
005
20160827083428.0
006
m d
007
cr nn 008maaau
008
171013s2017 gw s 0 eng d
020
$a
9783319065205
$q
(electronic bk.)
020
$a
9783319065199
$q
(paper)
024
7
$a
10.1007/978-3-319-06520-5
$2
doi
035
$a
978-3-319-06520-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
LB2326.3
072
7
$a
YQT
$2
bicssc
072
7
$a
EDU039000
$2
bisacsh
082
0 4
$a
378.0072
$2
23
090
$a
LB2326.3
$b
.B592 2017
245
0 0
$a
Big data and learning analytics in higher education
$h
[electronic resource] :
$b
current theory and practice /
$c
edited by Ben Kei Daniel.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xx, 272 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Theory and Practice -- Global challenges in higher education -- Technological trends in higher education -- Data Science -- Big data in higher education -- Learning analytics -- Big Data Platforms and Systems -- Analytical platforms -- Systems -- Databases -- Tools -- Visualization -- Dashboards -- Measurement and Methodologies -- Measures, indicators, metrics -- Data mining techniques -- Data capture -- Data tracking -- Metadata -- Methodologies -- Institutional Best Practices -- Case studies/best practices -- Polyicy implication on learning, teaching, and research -- Challenges and opportunities -- Future Trends -- Lessons learned -- Future perspectives in big data -- Conclusions.
520
$a
This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns.
650
0
$a
Big data.
$3
2045508
650
0
$a
Education, Higher
$x
Research.
$3
562463
650
1 4
$a
Education.
$3
516579
650
2 4
$a
Educational Technology.
$3
876844
650
2 4
$a
Learning & Instruction.
$3
893930
700
1
$a
Kei Daniel, Ben.
$3
3216550
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-06520-5
950
$a
Education (Springer-41171)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9313741
電子資源
11.線上閱覽_V
電子書
EB LB2326.3
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入