語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nonlinear principal component analys...
~
Mori, Yuichi.
FindBook
Google Book
Amazon
博客來
Nonlinear principal component analysis and its applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonlinear principal component analysis and its applications/ by Yuichi Mori, Masahiro Kuroda, Naomichi Makino.
作者:
Mori, Yuichi.
其他作者:
Kuroda, Masahiro.
出版者:
Singapore :Springer Singapore : : 2016.,
面頁冊數:
viii, 80 p. :ill., digital ;24 cm.
內容註:
1. Introduction -- 2. Nonlinear Principal Component Analysis -- 3. Application.
Contained By:
Springer eBooks
標題:
Principal components analysis. -
電子資源:
http://dx.doi.org/10.1007/978-981-10-0159-8
ISBN:
9789811001598
Nonlinear principal component analysis and its applications
Mori, Yuichi.
Nonlinear principal component analysis and its applications
[electronic resource] /by Yuichi Mori, Masahiro Kuroda, Naomichi Makino. - Singapore :Springer Singapore :2016. - viii, 80 p. :ill., digital ;24 cm. - SpringerBriefs in statistics,2191-544X. - SpringerBriefs in statistics..
1. Introduction -- 2. Nonlinear Principal Component Analysis -- 3. Application.
This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data. In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ordinal) is introduced as nonlinear PCA, in which an optimal scaling technique is used to quantify the categorical variables. The alternating least squares (ALS) is the main algorithm in the method. Multiple correspondence analysis (MCA), a special case of nonlinear PCA, is also introduced. All formulations in these methods are integrated in the same manner as matrix operations. Because any measurement levels data can be treated consistently as numerical data and ALS is a very powerful tool for estimations, the methods can be utilized in a variety of fields such as biometrics, econometrics, psychometrics, and sociology. In the applications part of the book, four applications are introduced: variable selection for mixed measurement levels data, sparse MCA, joint dimension reduction and clustering methods for categorical data, and acceleration of ALS computation. The variable selection methods in PCA that originally were developed for numerical data can be applied to any types of measurement levels by using nonlinear PCA. Sparseness and joint dimension reduction and clustering for nonlinear data, the results of recent studies, are extensions obtained by the same matrix operations in nonlinear PCA. Finally, an acceleration algorithm is proposed to reduce the problem of computational cost in the ALS iteration in nonlinear multivariate methods. This book thus presents the usefulness of nonlinear PCA which can be applied to different measurement levels data in diverse fields. As well, it covers the latest topics including the extension of the traditional statistical method, newly proposed nonlinear methods, and computational efficiency in the methods.
ISBN: 9789811001598
Standard No.: 10.1007/978-981-10-0159-8doiSubjects--Topical Terms:
565921
Principal components analysis.
LC Class. No.: HA29
Dewey Class. No.: 519.5
Nonlinear principal component analysis and its applications
LDR
:03074nmm a2200325 a 4500
001
2082613
003
DE-He213
005
20161209051540.0
006
m d
007
cr nn 008maaau
008
170717s2016 si s 0 eng d
020
$a
9789811001598
$q
(electronic bk.)
020
$a
9789811001574
$q
(paper)
024
7
$a
10.1007/978-981-10-0159-8
$2
doi
035
$a
978-981-10-0159-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HA29
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.5
$2
23
090
$a
HA29
$b
.M854 2016
100
1
$a
Mori, Yuichi.
$3
1619967
245
1 0
$a
Nonlinear principal component analysis and its applications
$h
[electronic resource] /
$c
by Yuichi Mori, Masahiro Kuroda, Naomichi Makino.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2016.
300
$a
viii, 80 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in statistics,
$x
2191-544X
505
0
$a
1. Introduction -- 2. Nonlinear Principal Component Analysis -- 3. Application.
520
$a
This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data. In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ordinal) is introduced as nonlinear PCA, in which an optimal scaling technique is used to quantify the categorical variables. The alternating least squares (ALS) is the main algorithm in the method. Multiple correspondence analysis (MCA), a special case of nonlinear PCA, is also introduced. All formulations in these methods are integrated in the same manner as matrix operations. Because any measurement levels data can be treated consistently as numerical data and ALS is a very powerful tool for estimations, the methods can be utilized in a variety of fields such as biometrics, econometrics, psychometrics, and sociology. In the applications part of the book, four applications are introduced: variable selection for mixed measurement levels data, sparse MCA, joint dimension reduction and clustering methods for categorical data, and acceleration of ALS computation. The variable selection methods in PCA that originally were developed for numerical data can be applied to any types of measurement levels by using nonlinear PCA. Sparseness and joint dimension reduction and clustering for nonlinear data, the results of recent studies, are extensions obtained by the same matrix operations in nonlinear PCA. Finally, an acceleration algorithm is proposed to reduce the problem of computational cost in the ALS iteration in nonlinear multivariate methods. This book thus presents the usefulness of nonlinear PCA which can be applied to different measurement levels data in diverse fields. As well, it covers the latest topics including the extension of the traditional statistical method, newly proposed nonlinear methods, and computational efficiency in the methods.
650
0
$a
Principal components analysis.
$3
565921
650
0
$a
Nonlinear theories.
$3
524352
650
1 4
$a
Statistics.
$3
517247
650
2 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
894293
650
2 4
$a
Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law.
$3
894294
700
1
$a
Kuroda, Masahiro.
$3
3206213
700
1
$a
Makino, Naomichi.
$3
3206214
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in statistics.
$3
1565658
856
4 0
$u
http://dx.doi.org/10.1007/978-981-10-0159-8
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9313141
電子資源
11.線上閱覽_V
電子書
EB HA29 .M854 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入