語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The limit shape problem for ensemble...
~
Hora, Akihito.
FindBook
Google Book
Amazon
博客來
The limit shape problem for ensembles of young diagrams
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The limit shape problem for ensembles of young diagrams/ by Akihito Hora.
作者:
Hora, Akihito.
出版者:
Tokyo :Springer Japan : : 2016.,
面頁冊數:
ix, 73 p. :ill., digital ;24 cm.
內容註:
1. Introduction -- 2. Prerequisite materials -- 2.1 representations of the symmetric group -- 2.2 free probability -- 2.3 ensembles of Young diagrams -- 3. Analysis of the Kerov--Olshanski algebra -- 3.1 polynomial functions of Young diagrams -- 3.2 Kerov polynomials -- 4. Static model -- 4.1 Plancherel ensemble -- 4.2 Thoma and other ensembles -- 5. Dynamic model -- 5.1 hydrodynamic limit for the Plancherel ensemble.
Contained By:
Springer eBooks
標題:
Limit cycles. -
電子資源:
http://dx.doi.org/10.1007/978-4-431-56487-4
ISBN:
9784431564874
The limit shape problem for ensembles of young diagrams
Hora, Akihito.
The limit shape problem for ensembles of young diagrams
[electronic resource] /by Akihito Hora. - Tokyo :Springer Japan :2016. - ix, 73 p. :ill., digital ;24 cm. - SpringerBriefs in mathematical physics,v.172197-1757 ;. - SpringerBriefs in mathematical physics ;v.17..
1. Introduction -- 2. Prerequisite materials -- 2.1 representations of the symmetric group -- 2.2 free probability -- 2.3 ensembles of Young diagrams -- 3. Analysis of the Kerov--Olshanski algebra -- 3.1 polynomial functions of Young diagrams -- 3.2 Kerov polynomials -- 4. Static model -- 4.1 Plancherel ensemble -- 4.2 Thoma and other ensembles -- 5. Dynamic model -- 5.1 hydrodynamic limit for the Plancherel ensemble.
This book treats ensembles of Young diagrams originating from group-theoretical contexts and investigates what statistical properties are observed there in a large-scale limit. The focus is mainly on analyzing the interesting phenomenon that specific curves appear in the appropriate scaling limit for the profiles of Young diagrams. This problem is regarded as an important origin of recent vital studies on harmonic analysis of huge symmetry structures. As mathematics, an asymptotic theory of representations is developed of the symmetric groups of degree n as n goes to infinity. The framework of rigorous limit theorems (especially the law of large numbers) in probability theory is employed as well as combinatorial analysis of group characters of symmetric groups and applications of Voiculescu's free probability. The central destination here is a clear description of the asymptotic behavior of rescaled profiles of Young diagrams in the Plancherel ensemble from both static and dynamic points of view.
ISBN: 9784431564874
Standard No.: 10.1007/978-4-431-56487-4doiSubjects--Topical Terms:
723820
Limit cycles.
LC Class. No.: QA371
Dewey Class. No.: 515.3
The limit shape problem for ensembles of young diagrams
LDR
:02435nmm a2200325 a 4500
001
2080846
003
DE-He213
005
20161110081432.0
006
m d
007
cr nn 008maaau
008
170616s2016 ja s 0 eng d
020
$a
9784431564874
$q
(electronic bk.)
020
$a
9784431564850
$q
(paper)
024
7
$a
10.1007/978-4-431-56487-4
$2
doi
035
$a
978-4-431-56487-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA371
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
082
0 4
$a
515.3
$2
23
090
$a
QA371
$b
.H811 2016
100
1
$a
Hora, Akihito.
$3
3201183
245
1 4
$a
The limit shape problem for ensembles of young diagrams
$h
[electronic resource] /
$c
by Akihito Hora.
260
$a
Tokyo :
$b
Springer Japan :
$b
Imprint: Springer,
$c
2016.
300
$a
ix, 73 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematical physics,
$x
2197-1757 ;
$v
v.17
505
0
$a
1. Introduction -- 2. Prerequisite materials -- 2.1 representations of the symmetric group -- 2.2 free probability -- 2.3 ensembles of Young diagrams -- 3. Analysis of the Kerov--Olshanski algebra -- 3.1 polynomial functions of Young diagrams -- 3.2 Kerov polynomials -- 4. Static model -- 4.1 Plancherel ensemble -- 4.2 Thoma and other ensembles -- 5. Dynamic model -- 5.1 hydrodynamic limit for the Plancherel ensemble.
520
$a
This book treats ensembles of Young diagrams originating from group-theoretical contexts and investigates what statistical properties are observed there in a large-scale limit. The focus is mainly on analyzing the interesting phenomenon that specific curves appear in the appropriate scaling limit for the profiles of Young diagrams. This problem is regarded as an important origin of recent vital studies on harmonic analysis of huge symmetry structures. As mathematics, an asymptotic theory of representations is developed of the symmetric groups of degree n as n goes to infinity. The framework of rigorous limit theorems (especially the law of large numbers) in probability theory is employed as well as combinatorial analysis of group characters of symmetric groups and applications of Voiculescu's free probability. The central destination here is a clear description of the asymptotic behavior of rescaled profiles of Young diagrams in the Plancherel ensemble from both static and dynamic points of view.
650
0
$a
Limit cycles.
$3
723820
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Mathematical Physics.
$3
1542352
650
2 4
$a
Topological Groups, Lie Groups.
$3
891005
650
2 4
$a
Group Theory and Generalizations.
$3
893889
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
650
2 4
$a
Complex Systems.
$3
1566441
650
2 4
$a
Statistical Physics and Dynamical Systems.
$3
3135115
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematical physics ;
$v
v.17.
$3
3201184
856
4 0
$u
http://dx.doi.org/10.1007/978-4-431-56487-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9312727
電子資源
11.線上閱覽_V
電子書
EB QA371 .H811 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入