語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hybrid soft computing for image segm...
~
Bhattacharyya, Siddhartha.
FindBook
Google Book
Amazon
博客來
Hybrid soft computing for image segmentation
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Hybrid soft computing for image segmentation/ edited by Siddhartha Bhattacharyya ... [et al.].
其他作者:
Bhattacharyya, Siddhartha.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xvi, 321 p. :ill., digital ;24 cm.
內容註:
Hybrid Soft Computing Techniques for Image Segmentation: Fundamentals and Applications -- Enhanced Rough-Fuzzy C-Means Algorithm for Image Segmentation -- Intuitionistic Fuzzy C-means Clustering Algorithm for Brain Image Segmentation -- Automatic Segmentation Approaches -- Modified Level Set Segmentation -- Fuzzy Deformable Models for 3D Segmentation of Brain Structures -- Rough Sets for Probabilistic Model Based Image Segmentation -- Segmentation of Cerebral Images.
Contained By:
Springer eBooks
標題:
Image segmentation. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-47223-2
ISBN:
9783319472232
Hybrid soft computing for image segmentation
Hybrid soft computing for image segmentation
[electronic resource] /edited by Siddhartha Bhattacharyya ... [et al.]. - Cham :Springer International Publishing :2016. - xvi, 321 p. :ill., digital ;24 cm.
Hybrid Soft Computing Techniques for Image Segmentation: Fundamentals and Applications -- Enhanced Rough-Fuzzy C-Means Algorithm for Image Segmentation -- Intuitionistic Fuzzy C-means Clustering Algorithm for Brain Image Segmentation -- Automatic Segmentation Approaches -- Modified Level Set Segmentation -- Fuzzy Deformable Models for 3D Segmentation of Brain Structures -- Rough Sets for Probabilistic Model Based Image Segmentation -- Segmentation of Cerebral Images.
This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization. The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence.
ISBN: 9783319472232
Standard No.: 10.1007/978-3-319-47223-2doiSubjects--Topical Terms:
2132796
Image segmentation.
LC Class. No.: TA1632 / .H93 2016
Dewey Class. No.: 006.6
Hybrid soft computing for image segmentation
LDR
:02251nmm a2200325 a 4500
001
2080578
003
DE-He213
005
20161112170425.0
006
m d
007
cr nn 008maaau
008
170616s2016 gw s 0 eng d
020
$a
9783319472232
$q
(electronic bk.)
020
$a
9783319472225
$q
(paper)
024
7
$a
10.1007/978-3-319-47223-2
$2
doi
035
$a
978-3-319-47223-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA1632
$b
.H93 2016
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.6
$2
23
090
$a
TA1632
$b
.H992 2016
245
0 0
$a
Hybrid soft computing for image segmentation
$h
[electronic resource] /
$c
edited by Siddhartha Bhattacharyya ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xvi, 321 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Hybrid Soft Computing Techniques for Image Segmentation: Fundamentals and Applications -- Enhanced Rough-Fuzzy C-Means Algorithm for Image Segmentation -- Intuitionistic Fuzzy C-means Clustering Algorithm for Brain Image Segmentation -- Automatic Segmentation Approaches -- Modified Level Set Segmentation -- Fuzzy Deformable Models for 3D Segmentation of Brain Structures -- Rough Sets for Probabilistic Model Based Image Segmentation -- Segmentation of Cerebral Images.
520
$a
This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization. The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence.
650
0
$a
Image segmentation.
$3
2132796
650
0
$a
Soft computing.
$3
563033
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
890871
700
1
$a
Bhattacharyya, Siddhartha.
$3
2179171
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-47223-2
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9312459
電子資源
11.線上閱覽_V
電子書
EB TA1632 .H992 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入