Principles of data mining
SpringerLink (Online service)

Linked to FindBook      Google Book      Amazon      博客來     
  • Principles of data mining
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Principles of data mining/ by Max Bramer.
    Author: Bramer, Max.
    Published: London :Springer London : : 2016.,
    Description: xv, 526 p. :ill., digital ;24 cm.
    [NT 15003449]: Introduction to Data Mining -- Data for Data Mining -- Introduction to Classification: Naive Bayes and Nearest Neighbour -- Using Decision Trees for Classification -- Decision Tree Induction: Using Entropy for Attribute Selection -- Decision Tree Induction: Using Frequency Tables for Attribute Selection -- Estimating the Predictive Accuracy of a Classifier -- Continuous Attributes -- Avoiding Overfitting of Decision Trees -- More About Entropy -- Inducing Modular Rules for Classification -- Measuring the Performance of a Classifier -- Dealing with Large Volumes of Data -- Ensemble Classification -- Comparing Classifiers -- Associate Rule Mining I -- Associate Rule Mining II -- Associate Rule Mining III -- Clustering -- Mining -- Classifying Streaming Data -- Classifying Streaming Data II: Time-dependent Data -- Appendix A - Essential Mathematics -- Appendix B - Datasets -- Appendix C - Sources of Further Information -- Appendix D - Glossary and Notation -- Appendix E - Solutions to Self-assessment Exercises -- Index.
    Contained By: Springer eBooks
    Subject: Data mining. -
    Online resource: http://dx.doi.org/10.1007/978-1-4471-7307-6
    ISBN: 9781447173076
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
 
W9312433 電子資源 11.線上閱覽_V 電子書 EB QA76.9.D343 B815 2016 一般使用(Normal) On shelf 0
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login