語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Road Map Inference from GPS Traces: ...
~
Qiu, Jia.
FindBook
Google Book
Amazon
博客來
Road Map Inference from GPS Traces: A Segmentation and Grouping Framework.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Road Map Inference from GPS Traces: A Segmentation and Grouping Framework./
作者:
Qiu, Jia.
面頁冊數:
109 p.
附註:
Source: Masters Abstracts International, Volume: 55-03.
Contained By:
Masters Abstracts International55-03(E).
標題:
Geographic information science and geodesy. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1605757
ISBN:
9781339340333
Road Map Inference from GPS Traces: A Segmentation and Grouping Framework.
Qiu, Jia.
Road Map Inference from GPS Traces: A Segmentation and Grouping Framework.
- 109 p.
Source: Masters Abstracts International, Volume: 55-03.
Thesis (M.Sc.)--University of Calgary (Canada), 2015.
A road network is one of the most fundamental data of geospatial information. In order to update road maps promptly and consistently, map inference is proposed to automatically generate roads' geometric positions and topological connections from Global Positioning System (GPS) traces. Most of the existing methods are designed to deal with low-noise, densely sampled and uniformly distributed GPS traces. In this research, we propose a novel point clouds segmentation and grouping framework to infer high-quality road maps from high-noise and sparsely sampled GPS traces. First, we segment the points of GPS traces into clusters to represent nearly straight roads. Second, we group the adjacent clusters according to their spatial proximities. Finally, we generate centerlines from the clusters and refine the intersections to form road networks. Experimental results show that our methods are robust to noises and sampling rates. The generated road maps have better geometric accuracy compare to the existing methods.
ISBN: 9781339340333Subjects--Topical Terms:
2122917
Geographic information science and geodesy.
Road Map Inference from GPS Traces: A Segmentation and Grouping Framework.
LDR
:01808nmm a2200253 4500
001
2079438
005
20170313112147.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781339340333
035
$a
(MiAaPQ)AAI1605757
035
$a
AAI1605757
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Qiu, Jia.
$3
3195118
245
1 0
$a
Road Map Inference from GPS Traces: A Segmentation and Grouping Framework.
300
$a
109 p.
500
$a
Source: Masters Abstracts International, Volume: 55-03.
502
$a
Thesis (M.Sc.)--University of Calgary (Canada), 2015.
520
$a
A road network is one of the most fundamental data of geospatial information. In order to update road maps promptly and consistently, map inference is proposed to automatically generate roads' geometric positions and topological connections from Global Positioning System (GPS) traces. Most of the existing methods are designed to deal with low-noise, densely sampled and uniformly distributed GPS traces. In this research, we propose a novel point clouds segmentation and grouping framework to infer high-quality road maps from high-noise and sparsely sampled GPS traces. First, we segment the points of GPS traces into clusters to represent nearly straight roads. Second, we group the adjacent clusters according to their spatial proximities. Finally, we generate centerlines from the clusters and refine the intersections to form road networks. Experimental results show that our methods are robust to noises and sampling rates. The generated road maps have better geometric accuracy compare to the existing methods.
590
$a
School code: 0026.
650
4
$a
Geographic information science and geodesy.
$3
2122917
690
$a
0370
710
2
$a
University of Calgary (Canada).
$b
Geomatics Engineering.
$3
3170933
773
0
$t
Masters Abstracts International
$g
55-03(E).
790
$a
0026
791
$a
M.Sc.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1605757
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9312316
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入