語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A Surface Chemistry Approach to Enha...
~
Carey, Graham Hamilton.
FindBook
Google Book
Amazon
博客來
A Surface Chemistry Approach to Enhancing Colloidal Quantum Dot Solids for Photovoltaics.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A Surface Chemistry Approach to Enhancing Colloidal Quantum Dot Solids for Photovoltaics./
作者:
Carey, Graham Hamilton.
面頁冊數:
126 p.
附註:
Source: Dissertation Abstracts International, Volume: 77-06(E), Section: B.
Contained By:
Dissertation Abstracts International77-06B(E).
標題:
Nanotechnology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3746229
ISBN:
9781339394916
A Surface Chemistry Approach to Enhancing Colloidal Quantum Dot Solids for Photovoltaics.
Carey, Graham Hamilton.
A Surface Chemistry Approach to Enhancing Colloidal Quantum Dot Solids for Photovoltaics.
- 126 p.
Source: Dissertation Abstracts International, Volume: 77-06(E), Section: B.
Thesis (Ph.D.)--University of Toronto (Canada), 2015.
Colloidal quantum dot (CQD) photovoltaic devices have improved rapidly over the past decade of research. By taking advantage of the quantum confinement effect, solar cells constructed using films of infrared-bandgap nanoparticles are able to capture previously untapped ranges of the solar energy spectrum. Additionally, films are fabricated using simple, cheap, reproducible solution processing techniques, enabling the creation of low-cost, flexible photovoltaic devices.
ISBN: 9781339394916Subjects--Topical Terms:
526235
Nanotechnology.
A Surface Chemistry Approach to Enhancing Colloidal Quantum Dot Solids for Photovoltaics.
LDR
:03020nmm a2200301 4500
001
2077699
005
20161114130344.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781339394916
035
$a
(MiAaPQ)AAI3746229
035
$a
AAI3746229
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Carey, Graham Hamilton.
$3
3193227
245
1 2
$a
A Surface Chemistry Approach to Enhancing Colloidal Quantum Dot Solids for Photovoltaics.
300
$a
126 p.
500
$a
Source: Dissertation Abstracts International, Volume: 77-06(E), Section: B.
500
$a
Adviser: Edward H. Sargent.
502
$a
Thesis (Ph.D.)--University of Toronto (Canada), 2015.
520
$a
Colloidal quantum dot (CQD) photovoltaic devices have improved rapidly over the past decade of research. By taking advantage of the quantum confinement effect, solar cells constructed using films of infrared-bandgap nanoparticles are able to capture previously untapped ranges of the solar energy spectrum. Additionally, films are fabricated using simple, cheap, reproducible solution processing techniques, enabling the creation of low-cost, flexible photovoltaic devices.
520
$a
A key factor limiting the creation of high efficiency CQD solar cells is the short charge carrier diffusion length in films. Driven by a combination of limited carrier mobility, poor nanoparticle surface passivation, and the presence of unexamined electrically active impurities throughout the film, the poor diffusion length limits the active layer thickness in CQD solar cells, leading to lower-than-desired light absorption, and curtailing the photocurrent generated by such devices.
520
$a
This thesis seeks to address poor diffusion length by addressing each of the limiting factors in turn. Electrical transport in quantum dot solids is examined in the context of improved quantum dot packing; methods are developed to improve packing by using actively densifying components, or by dramatically lowering the volume change required between quantum dots in solution and in solid state. Quantum dot surface passivation is improved by introducing a crucial secondary, small halide ligand source, and by surveying the impact of the processing environment on the final quality of the quantum dot surface. A heretofore unidentified impurity present in quantum dot solids is identified, characterized, and chemically eliminated. Finally, lessons learned through these experiments are combined into a single, novel materials system, leading to quantum dot devices with a significantly improved diffusion length (enhanced from 70 to 230 nm). This enabled thick, high current density (30 mA cm -2, compared to typical values in the 20--25 mA cm-2 range) devices, and the highest reported solar power conversion efficiency to date.
590
$a
School code: 0779.
650
4
$a
Nanotechnology.
$3
526235
650
4
$a
Alternative Energy.
$3
1035473
690
$a
0652
690
$a
0363
710
2
$a
University of Toronto (Canada).
$b
Electrical and Computer Engineering.
$3
2096349
773
0
$t
Dissertation Abstracts International
$g
77-06B(E).
790
$a
0779
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3746229
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9310567
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入