語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fusion Deformable Template with Disc...
~
Liu, Cheng-Yi.
FindBook
Google Book
Amazon
博客來
Fusion Deformable Template with Discriminative Models for Robust Three-Dimensional Brain Image Segmentation.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fusion Deformable Template with Discriminative Models for Robust Three-Dimensional Brain Image Segmentation./
作者:
Liu, Cheng-Yi.
面頁冊數:
100 p.
附註:
Source: Dissertation Abstracts International, Volume: 73-09(E), Section: B.
Contained By:
Dissertation Abstracts International73-09B(E).
標題:
Biomedical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3515080
ISBN:
9781267406316
Fusion Deformable Template with Discriminative Models for Robust Three-Dimensional Brain Image Segmentation.
Liu, Cheng-Yi.
Fusion Deformable Template with Discriminative Models for Robust Three-Dimensional Brain Image Segmentation.
- 100 p.
Source: Dissertation Abstracts International, Volume: 73-09(E), Section: B.
Thesis (Ph.D.)--University of California, Los Angeles, 2011.
Automatically segmenting brain anatomical structures from 3D MRI images is an important task in medical imaging. One major challenge in this problem is to design/learn effective models (for both intensities and shapes) accounting for the large image variation due to the acquisition processes by different machines, at different parameters, and for different subjects. Deformable template models (mostly generative) study the explicit parameters for matching the images with the templates, and thus are robust against the global intensity changes; discriminative models are able to combine many local image statistics to capture the complex image patterns. In this paper, we propose a robust brain image segmentation algorithm by fusing together deformable templates and informative features. We tested our method on a few popular datasets of a large number of images and show advantages over several existing state-of-the-art systems.
ISBN: 9781267406316Subjects--Topical Terms:
535387
Biomedical engineering.
Fusion Deformable Template with Discriminative Models for Robust Three-Dimensional Brain Image Segmentation.
LDR
:01891nmm a2200301 4500
001
2073117
005
20160914074006.5
008
170521s2011 ||||||||||||||||| ||eng d
020
$a
9781267406316
035
$a
(MiAaPQ)AAI3515080
035
$a
AAI3515080
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Liu, Cheng-Yi.
$3
3188344
245
1 0
$a
Fusion Deformable Template with Discriminative Models for Robust Three-Dimensional Brain Image Segmentation.
300
$a
100 p.
500
$a
Source: Dissertation Abstracts International, Volume: 73-09(E), Section: B.
500
$a
Adviser: Zhuowen Tu.
502
$a
Thesis (Ph.D.)--University of California, Los Angeles, 2011.
520
$a
Automatically segmenting brain anatomical structures from 3D MRI images is an important task in medical imaging. One major challenge in this problem is to design/learn effective models (for both intensities and shapes) accounting for the large image variation due to the acquisition processes by different machines, at different parameters, and for different subjects. Deformable template models (mostly generative) study the explicit parameters for matching the images with the templates, and thus are robust against the global intensity changes; discriminative models are able to combine many local image statistics to capture the complex image patterns. In this paper, we propose a robust brain image segmentation algorithm by fusing together deformable templates and informative features. We tested our method on a few popular datasets of a large number of images and show advantages over several existing state-of-the-art systems.
590
$a
School code: 0031.
650
4
$a
Biomedical engineering.
$3
535387
650
4
$a
Computer science.
$3
523869
650
4
$a
Neurobiology.
$3
588707
650
4
$a
Medical imaging.
$3
3172799
690
$a
0541
690
$a
0984
690
$a
0421
690
$a
0574
710
2
$a
University of California, Los Angeles.
$3
626622
773
0
$t
Dissertation Abstracts International
$g
73-09B(E).
790
$a
0031
791
$a
Ph.D.
792
$a
2011
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3515080
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9305985
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入