語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Observations of meandering and upwel...
~
Leber, Greta M.
FindBook
Google Book
Amazon
博客來
Observations of meandering and upwelling events in the Agulhas Current at 34°s.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Observations of meandering and upwelling events in the Agulhas Current at 34°s./
作者:
Leber, Greta M.
面頁冊數:
122 p.
附註:
Source: Dissertation Abstracts International, Volume: 76-10(E), Section: B.
Contained By:
Dissertation Abstracts International76-10B(E).
標題:
Physical oceanography. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3704942
ISBN:
9781321776423
Observations of meandering and upwelling events in the Agulhas Current at 34°s.
Leber, Greta M.
Observations of meandering and upwelling events in the Agulhas Current at 34°s.
- 122 p.
Source: Dissertation Abstracts International, Volume: 76-10(E), Section: B.
Thesis (Ph.D.)--University of Miami, 2015.
Over three separate cruise, we collected direct velocity and hydrographic observations across the Agulhas Current at approximately 34°S. These transects included the first ever full-depth observations of a solitary meander. We use these data to explore how the solitary meander affects the transport, velocity structure and instantaneous water mass distribution of the current. Although we find that the meander is in geostrophic balance, the meander's fast propagation along the line causes sampling bias in the geostrophic velocities such that direct velocity measurements are necessary to observe the meandering current's structure. We find that the meandering current broadens and weakens, thereby maintaining its transport. The input of cyclonic vorticity during meandering causes intermediate layers to thin along the continental slope that also upwell 133 m onto the continental shelf at a rate of at least 13.3 m per day, but likely as much as 66.5-133 m per day. This process brings South Indian Central Water, normally found below the shelf break, up onto the continental shelf, which cools shelf waters by as much as 9°C. These changes coincide with the appearance of 0.25 fresher and 1°C cooler waters above and 0.25 saltier and 1°C warmer waters below the thermocline. We introduce a new coordinate system to separate these effects into diapycnal transport and kinematic effects due to the offshore shift and broadening of the current. We find that most of the temperature and salinity changes are due to diapycnal transport, although changes near the surface are muddled by seasonal variability. Although theory suggests that cross-frontal mixing should be greater during a meander, we find that mixing across the front is not significantly enhanced. Hence, there are large diapycnal fluxes on either side of the front during a meander, while mixing across the front in inhibited.
ISBN: 9781321776423Subjects--Topical Terms:
3168433
Physical oceanography.
Observations of meandering and upwelling events in the Agulhas Current at 34°s.
LDR
:04316nmm a2200277 4500
001
2072564
005
20160808080958.5
008
170521s2015 ||||||||||||||||| ||eng d
020
$a
9781321776423
035
$a
(MiAaPQ)AAI3704942
035
$a
AAI3704942
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Leber, Greta M.
$3
3187763
245
1 0
$a
Observations of meandering and upwelling events in the Agulhas Current at 34°s.
300
$a
122 p.
500
$a
Source: Dissertation Abstracts International, Volume: 76-10(E), Section: B.
500
$a
Adviser: Lisa M. Beal.
502
$a
Thesis (Ph.D.)--University of Miami, 2015.
520
$a
Over three separate cruise, we collected direct velocity and hydrographic observations across the Agulhas Current at approximately 34°S. These transects included the first ever full-depth observations of a solitary meander. We use these data to explore how the solitary meander affects the transport, velocity structure and instantaneous water mass distribution of the current. Although we find that the meander is in geostrophic balance, the meander's fast propagation along the line causes sampling bias in the geostrophic velocities such that direct velocity measurements are necessary to observe the meandering current's structure. We find that the meandering current broadens and weakens, thereby maintaining its transport. The input of cyclonic vorticity during meandering causes intermediate layers to thin along the continental slope that also upwell 133 m onto the continental shelf at a rate of at least 13.3 m per day, but likely as much as 66.5-133 m per day. This process brings South Indian Central Water, normally found below the shelf break, up onto the continental shelf, which cools shelf waters by as much as 9°C. These changes coincide with the appearance of 0.25 fresher and 1°C cooler waters above and 0.25 saltier and 1°C warmer waters below the thermocline. We introduce a new coordinate system to separate these effects into diapycnal transport and kinematic effects due to the offshore shift and broadening of the current. We find that most of the temperature and salinity changes are due to diapycnal transport, although changes near the surface are muddled by seasonal variability. Although theory suggests that cross-frontal mixing should be greater during a meander, we find that mixing across the front is not significantly enhanced. Hence, there are large diapycnal fluxes on either side of the front during a meander, while mixing across the front in inhibited.
520
$a
Our data also include a wind-driven upwelling event that results in a similar magnitude cooling and uplift of South Indian Central Water. Therefore, we find that both upwelling-favorable winds and meandering can lead to cooling events with similar structure. We use satellite data to extend this analysis and identify cold events that are locally forced. Over an 11-year period, we identify an average of 4 events per year lasting 3.5 days. We consider upwelling-favorable alongshore winds, negative wind stress curl, meandering and increased current strength as possible forcing mechanisms. We find that all four forcing mechanisms significantly correlate to cold event length, and, with the exception of meandering, to cold event strength. We find that cold events are most likely to occur in austral summer and fall, during the time of year that prevailing winds are upwelling-favorable. Wind stress curl is found to be strongly dependent on meandering and alongshore winds. We find that frontal variability associated with meanders drives a local wind stress curl that further enhances upwelling. Wind stress curl is anticorrelated with alongshore winds and the two effects always oppose each other. 3 times more cold events are current-driven than wind-driven. Half of cold events are associated with meanders, one quarter with increased current strength, 18% with upwelling-favorable alongshore winds, and 5% with wind stress curl. At least one of the four forcing mechanisms explains 81% of cold event days and 93% of cold events.
590
$a
School code: 0125.
650
4
$a
Physical oceanography.
$3
3168433
690
$a
0415
710
2
$a
University of Miami.
$b
Meteorology and Physical Oceanography.
$3
3187764
773
0
$t
Dissertation Abstracts International
$g
76-10B(E).
790
$a
0125
791
$a
Ph.D.
792
$a
2015
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3704942
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9305432
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入