語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The parabolic Anderson model = rando...
~
Konig, Wolfgang.
FindBook
Google Book
Amazon
博客來
The parabolic Anderson model = random walk in random potential /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The parabolic Anderson model/ by Wolfgang Konig.
其他題名:
random walk in random potential /
作者:
Konig, Wolfgang.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
ix, 192 p. :ill., digital ;24 cm.
內容註:
1 Background, model and questions -- 2 Tools and concepts -- 3 Moment asymptotics for the total mass -- 4 Some proof techniques -- 5 Almost sure asymptotics for the total mass -- 6 Strong intermittency -- 7 Refined questions -- 8 Time-dependent potentials.
Contained By:
Springer eBooks
標題:
Random walks (Mathematics) -
電子資源:
http://dx.doi.org/10.1007/978-3-319-33596-4
ISBN:
9783319335964
The parabolic Anderson model = random walk in random potential /
Konig, Wolfgang.
The parabolic Anderson model
random walk in random potential /[electronic resource] :by Wolfgang Konig. - Cham :Springer International Publishing :2016. - ix, 192 p. :ill., digital ;24 cm. - Pathways in mathematics,2367-3451. - Pathways in mathematics..
1 Background, model and questions -- 2 Tools and concepts -- 3 Moment asymptotics for the total mass -- 4 Some proof techniques -- 5 Almost sure asymptotics for the total mass -- 6 Strong intermittency -- 7 Refined questions -- 8 Time-dependent potentials.
This is a comprehensive survey on the research on the parabolic Anderson model - the heat equation with random potential or the random walk in random potential - of the years 1990 - 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.) We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension.
ISBN: 9783319335964
Standard No.: 10.1007/978-3-319-33596-4doiSubjects--Topical Terms:
532102
Random walks (Mathematics)
LC Class. No.: QA274.73
Dewey Class. No.: 519.282
The parabolic Anderson model = random walk in random potential /
LDR
:02254nmm a2200337 a 4500
001
2041577
003
DE-He213
005
20161130134058.0
006
m d
007
cr nn 008maaau
008
170118s2016 gw s 0 eng d
020
$a
9783319335964
$q
(electronic bk.)
020
$a
9783319335957
$q
(paper)
024
7
$a
10.1007/978-3-319-33596-4
$2
doi
035
$a
978-3-319-33596-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.73
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.282
$2
23
090
$a
QA274.73
$b
.K82 2016
100
1
$a
Konig, Wolfgang.
$3
2200292
245
1 4
$a
The parabolic Anderson model
$h
[electronic resource] :
$b
random walk in random potential /
$c
by Wolfgang Konig.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhauser,
$c
2016.
300
$a
ix, 192 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Pathways in mathematics,
$x
2367-3451
505
0
$a
1 Background, model and questions -- 2 Tools and concepts -- 3 Moment asymptotics for the total mass -- 4 Some proof techniques -- 5 Almost sure asymptotics for the total mass -- 6 Strong intermittency -- 7 Refined questions -- 8 Time-dependent potentials.
520
$a
This is a comprehensive survey on the research on the parabolic Anderson model - the heat equation with random potential or the random walk in random potential - of the years 1990 - 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.) We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension.
650
0
$a
Random walks (Mathematics)
$3
532102
650
0
$a
Parabolic operators.
$3
555716
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
1566152
650
2 4
$a
Mathematical Methods in Physics.
$3
890898
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Pathways in mathematics.
$3
2200293
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-33596-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9282439
電子資源
11.線上閱覽_V
電子書
EB QA274.73 .K82 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入