語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Big data optimization = recent devel...
~
Emrouznejad, Ali.
FindBook
Google Book
Amazon
博客來
Big data optimization = recent developments and challenges /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Big data optimization/ edited by Ali Emrouznejad.
其他題名:
recent developments and challenges /
其他作者:
Emrouznejad, Ali.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xv, 487 p. :ill. (some col.), digital ;24 cm.
內容註:
Big data: Who, What and Where? Social, Cognitive and Journals Map of Big Data Publications with Focus on Optimization -- Setting up a Big Data Project: Challenges, Opportunities, Technologies and Optimization -- Optimizing Intelligent Reduction Techniques for Big Data -- Performance Tools for Big Data Optimization -- Optimising Big Images -- Interlinking Big Data to Web of Data -- Topology, Big Data and Optimization -- Applications of Big Data Analytics Tools for Data Management -- Optimizing Access Policies for Big Data Repositories: Latency Variables and the Genome Commons -- Big Data Optimization via Next Generation Data Center Architecture -- Big Data Optimization within Real World Monitoring Constraints -- Smart Sampling and Optimal Dimensionality Reduction of Big Data Using Compressed Sensing -- Optimized Management of BIG Data Produced in Brain Disorder Rehabilitation -- Big Data Optimization in Maritime Logistics -- Big Network Analytics Based on Nonconvex Optimization -- Large-scale and Big Optimization Based on Hadoop -- Computational Approaches in Large-Scale Unconstrained Optimization -- Numerical Methods for Large-Scale Nonsmooth Optimization -- Metaheuristics for Continuous Optimization of High-Dimensional Problems: State of the Art and Perspectives -- Convergent Parallel Algorithms for Big Data Optimization Problems.
Contained By:
Springer eBooks
標題:
Big data. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-30265-2
ISBN:
9783319302652
Big data optimization = recent developments and challenges /
Big data optimization
recent developments and challenges /[electronic resource] :edited by Ali Emrouznejad. - Cham :Springer International Publishing :2016. - xv, 487 p. :ill. (some col.), digital ;24 cm. - Studies in big data,v.182197-6503 ;. - Studies in big data ;v.1..
Big data: Who, What and Where? Social, Cognitive and Journals Map of Big Data Publications with Focus on Optimization -- Setting up a Big Data Project: Challenges, Opportunities, Technologies and Optimization -- Optimizing Intelligent Reduction Techniques for Big Data -- Performance Tools for Big Data Optimization -- Optimising Big Images -- Interlinking Big Data to Web of Data -- Topology, Big Data and Optimization -- Applications of Big Data Analytics Tools for Data Management -- Optimizing Access Policies for Big Data Repositories: Latency Variables and the Genome Commons -- Big Data Optimization via Next Generation Data Center Architecture -- Big Data Optimization within Real World Monitoring Constraints -- Smart Sampling and Optimal Dimensionality Reduction of Big Data Using Compressed Sensing -- Optimized Management of BIG Data Produced in Brain Disorder Rehabilitation -- Big Data Optimization in Maritime Logistics -- Big Network Analytics Based on Nonconvex Optimization -- Large-scale and Big Optimization Based on Hadoop -- Computational Approaches in Large-Scale Unconstrained Optimization -- Numerical Methods for Large-Scale Nonsmooth Optimization -- Metaheuristics for Continuous Optimization of High-Dimensional Problems: State of the Art and Perspectives -- Convergent Parallel Algorithms for Big Data Optimization Problems.
The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.
ISBN: 9783319302652
Standard No.: 10.1007/978-3-319-30265-2doiSubjects--Topical Terms:
2045508
Big data.
LC Class. No.: QA76.9.B45
Dewey Class. No.: 005.7
Big data optimization = recent developments and challenges /
LDR
:03103nmm a2200325 a 4500
001
2038131
003
DE-He213
005
20161019132746.0
006
m d
007
cr nn 008maaau
008
161209s2016 gw s 0 eng d
020
$a
9783319302652
$q
(electronic bk.)
020
$a
9783319302638
$q
(paper)
024
7
$a
10.1007/978-3-319-30265-2
$2
doi
035
$a
978-3-319-30265-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.B45
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.B45
$b
B592 2016
245
0 0
$a
Big data optimization
$h
[electronic resource] :
$b
recent developments and challenges /
$c
edited by Ali Emrouznejad.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xv, 487 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.18
505
0
$a
Big data: Who, What and Where? Social, Cognitive and Journals Map of Big Data Publications with Focus on Optimization -- Setting up a Big Data Project: Challenges, Opportunities, Technologies and Optimization -- Optimizing Intelligent Reduction Techniques for Big Data -- Performance Tools for Big Data Optimization -- Optimising Big Images -- Interlinking Big Data to Web of Data -- Topology, Big Data and Optimization -- Applications of Big Data Analytics Tools for Data Management -- Optimizing Access Policies for Big Data Repositories: Latency Variables and the Genome Commons -- Big Data Optimization via Next Generation Data Center Architecture -- Big Data Optimization within Real World Monitoring Constraints -- Smart Sampling and Optimal Dimensionality Reduction of Big Data Using Compressed Sensing -- Optimized Management of BIG Data Produced in Brain Disorder Rehabilitation -- Big Data Optimization in Maritime Logistics -- Big Network Analytics Based on Nonconvex Optimization -- Large-scale and Big Optimization Based on Hadoop -- Computational Approaches in Large-Scale Unconstrained Optimization -- Numerical Methods for Large-Scale Nonsmooth Optimization -- Metaheuristics for Continuous Optimization of High-Dimensional Problems: State of the Art and Perspectives -- Convergent Parallel Algorithms for Big Data Optimization Problems.
520
$a
The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Operation Research/Decision Theory.
$3
1620900
700
1
$a
Emrouznejad, Ali.
$3
2056875
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.1.
$3
2055170
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-30265-2
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9280828
電子資源
11.線上閱覽_V
電子書
EB QA76.9.B45 B592 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入