語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Real-time progressive hyperspectral ...
~
Chang, Chein-I.
FindBook
Google Book
Amazon
博客來
Real-time progressive hyperspectral image processing = endmember finding and anomaly detection /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Real-time progressive hyperspectral image processing/ by Chein-I Chang.
其他題名:
endmember finding and anomaly detection /
作者:
Chang, Chein-I.
出版者:
New York, NY :Springer New York : : 2016.,
面頁冊數:
xxiii, 623 p. :ill., digital ;24 cm.
內容註:
Overview and Introduction -- Part I: Preliminaries -- Linear Spectral Mixture Analysis -- Finding Endmembers in Hyperspectral Imagery -- Linear Spectral Unmixing with Three Criteria, Least Squares Error, Simplex Volume and Orthogonal Projection -- Hyperspectral Target Detection -- Part II: Sample-wise Sequential Processes for Finding Endmembers -- Abundance-Unconstrained Sequential Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Constrained Sequential Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Endmember Finding Algorithms: Convex Cone Volume Analysis -- Fully Abundance-Constrained Sequential Linear Spectral Mixture Analysis for Finding Endmembers -- Part III: Sample-Wise Progressive Processes for Finding Endmembers -- Abundance-Unconstrained Progressive Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Unconstrained Progressive Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Progressive Endmember Finding Algorithms: Convex Cone Volume Analysis -- Sully Abundance-Constrained Progressive Linear Spectral Mixture Analysis for Finding Endmembers -- Part IV: Sample-Wise Progressive Unsupervised Target Detection -- Progressive Anomaly Detection -- Progressive Adaptive Anomaly Detection -- Progressive Window-Based Anomaly Detection -- Progressive Subpixel Target Detection and Classification.
Contained By:
Springer eBooks
標題:
Image processing - Digital techniques. -
電子資源:
http://dx.doi.org/10.1007/978-1-4419-6187-7
ISBN:
9781441961877
Real-time progressive hyperspectral image processing = endmember finding and anomaly detection /
Chang, Chein-I.
Real-time progressive hyperspectral image processing
endmember finding and anomaly detection /[electronic resource] :by Chein-I Chang. - New York, NY :Springer New York :2016. - xxiii, 623 p. :ill., digital ;24 cm.
Overview and Introduction -- Part I: Preliminaries -- Linear Spectral Mixture Analysis -- Finding Endmembers in Hyperspectral Imagery -- Linear Spectral Unmixing with Three Criteria, Least Squares Error, Simplex Volume and Orthogonal Projection -- Hyperspectral Target Detection -- Part II: Sample-wise Sequential Processes for Finding Endmembers -- Abundance-Unconstrained Sequential Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Constrained Sequential Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Endmember Finding Algorithms: Convex Cone Volume Analysis -- Fully Abundance-Constrained Sequential Linear Spectral Mixture Analysis for Finding Endmembers -- Part III: Sample-Wise Progressive Processes for Finding Endmembers -- Abundance-Unconstrained Progressive Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Unconstrained Progressive Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Progressive Endmember Finding Algorithms: Convex Cone Volume Analysis -- Sully Abundance-Constrained Progressive Linear Spectral Mixture Analysis for Finding Endmembers -- Part IV: Sample-Wise Progressive Unsupervised Target Detection -- Progressive Anomaly Detection -- Progressive Adaptive Anomaly Detection -- Progressive Window-Based Anomaly Detection -- Progressive Subpixel Target Detection and Classification.
The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI) Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book. Includes preliminary background which is essential to those who work in hyperspectral imaging area Develops sequential and progressive algorithms for finding endmembers as they relate to real time hyperspectral image processing Designs algorithms for anomaly detection from causality and real time perspectives and investigates the effects of causality and real-time processing in anomaly detection.
ISBN: 9781441961877
Standard No.: 10.1007/978-1-4419-6187-7doiSubjects--Topical Terms:
532550
Image processing
--Digital techniques.
LC Class. No.: TA1637
Dewey Class. No.: 621.3678
Real-time progressive hyperspectral image processing = endmember finding and anomaly detection /
LDR
:03832nmm m2200337 m 4500
001
2032646
003
DE-He213
005
20160914143439.0
006
m d
007
cr nn 008maaau
008
161011s2016 nyu s 0 eng d
020
$a
9781441961877
$q
(electronic bk.)
020
$a
9781441961860
$q
(paper)
024
7
$a
10.1007/978-1-4419-6187-7
$2
doi
035
$a
978-1-4419-6187-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA1637
072
7
$a
TTBM
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
COM073000
$2
bisacsh
082
0 4
$a
621.3678
$2
23
090
$a
TA1637
$b
.C456 2016
100
1
$a
Chang, Chein-I.
$3
811672
245
1 0
$a
Real-time progressive hyperspectral image processing
$h
[electronic resource] :
$b
endmember finding and anomaly detection /
$c
by Chein-I Chang.
260
$a
New York, NY :
$b
Springer New York :
$b
Imprint: Springer,
$c
2016.
300
$a
xxiii, 623 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Overview and Introduction -- Part I: Preliminaries -- Linear Spectral Mixture Analysis -- Finding Endmembers in Hyperspectral Imagery -- Linear Spectral Unmixing with Three Criteria, Least Squares Error, Simplex Volume and Orthogonal Projection -- Hyperspectral Target Detection -- Part II: Sample-wise Sequential Processes for Finding Endmembers -- Abundance-Unconstrained Sequential Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Constrained Sequential Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Endmember Finding Algorithms: Convex Cone Volume Analysis -- Fully Abundance-Constrained Sequential Linear Spectral Mixture Analysis for Finding Endmembers -- Part III: Sample-Wise Progressive Processes for Finding Endmembers -- Abundance-Unconstrained Progressive Endmember Finding Algorithms: Orthogonal Projection -- Fully Abundance-Unconstrained Progressive Endmember Finding Algorithms: Simplex Volume Analysis -- Partially Abundance Non-Negativity-Constrained Progressive Endmember Finding Algorithms: Convex Cone Volume Analysis -- Sully Abundance-Constrained Progressive Linear Spectral Mixture Analysis for Finding Endmembers -- Part IV: Sample-Wise Progressive Unsupervised Target Detection -- Progressive Anomaly Detection -- Progressive Adaptive Anomaly Detection -- Progressive Window-Based Anomaly Detection -- Progressive Subpixel Target Detection and Classification.
520
$a
The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI) Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book. Includes preliminary background which is essential to those who work in hyperspectral imaging area Develops sequential and progressive algorithms for finding endmembers as they relate to real time hyperspectral image processing Designs algorithms for anomaly detection from causality and real time perspectives and investigates the effects of causality and real-time processing in anomaly detection.
650
0
$a
Image processing
$x
Digital techniques.
$3
532550
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Signal, Image and Speech Processing.
$3
891073
650
2 4
$a
Image Processing and Computer Vision.
$3
891070
650
2 4
$a
Pattern Recognition.
$3
891045
650
2 4
$a
Biometrics.
$3
898232
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4419-6187-7
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9278715
電子資源
11.線上閱覽_V
電子書
EB TA1637 .C456 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入