語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The spectrum of hyperbolic surfaces
~
Bergeron, Nicolas.
FindBook
Google Book
Amazon
博客來
The spectrum of hyperbolic surfaces
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The spectrum of hyperbolic surfaces/ by Nicolas Bergeron.
作者:
Bergeron, Nicolas.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xiii, 370 p. :ill., digital ;24 cm.
內容註:
Preface -- Introduction -- Arithmetic Hyperbolic Surfaces -- Spectral Decomposition -- Maass Forms -- The Trace Formula -- Multiplicity of lambda1 and the Selberg Conjecture -- L-Functions and the Selberg Conjecture -- Jacquet-Langlands Correspondence -- Arithmetic Quantum Unique Ergodicity -- Appendices -- References -- Index of notation -- Index -- Index of names.
Contained By:
Springer eBooks
標題:
Spectral theory (Mathematics) -
電子資源:
http://dx.doi.org/10.1007/978-3-319-27666-3
ISBN:
9783319276663$q(electronic bk.)
The spectrum of hyperbolic surfaces
Bergeron, Nicolas.
The spectrum of hyperbolic surfaces
[electronic resource] /by Nicolas Bergeron. - Cham :Springer International Publishing :2016. - xiii, 370 p. :ill., digital ;24 cm. - Universitext,0172-5939. - Universitext..
Preface -- Introduction -- Arithmetic Hyperbolic Surfaces -- Spectral Decomposition -- Maass Forms -- The Trace Formula -- Multiplicity of lambda1 and the Selberg Conjecture -- L-Functions and the Selberg Conjecture -- Jacquet-Langlands Correspondence -- Arithmetic Quantum Unique Ergodicity -- Appendices -- References -- Index of notation -- Index -- Index of names.
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called "arithmetic hyperbolic surfaces", the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.
ISBN: 9783319276663$q(electronic bk.)
Standard No.: 10.1007/978-3-319-27666-3doiSubjects--Topical Terms:
524915
Spectral theory (Mathematics)
LC Class. No.: QA685
Dewey Class. No.: 516.9
The spectrum of hyperbolic surfaces
LDR
:02585nmm a2200337 a 4500
001
2030982
003
DE-He213
005
20160825114714.0
006
m d
007
cr nn 008maaau
008
160908s2016 gw s 0 eng d
020
$a
9783319276663$q(electronic bk.)
020
$a
9783319276649$q(paper)
024
7
$a
10.1007/978-3-319-27666-3
$2
doi
035
$a
978-3-319-27666-3
040
$a
GP
$c
GP
041
1
$a
eng
$h
fre
050
4
$a
QA685
072
7
$a
PBML
$2
bicssc
072
7
$a
MAT012040
$2
bisacsh
082
0 4
$a
516.9
$2
23
090
$a
QA685
$b
.B496 2016
100
1
$a
Bergeron, Nicolas.
$3
2183106
240
1 0
$a
Spectre des surfaces hyperboliques.
$l
English
245
1 4
$a
The spectrum of hyperbolic surfaces
$h
[electronic resource] /
$c
by Nicolas Bergeron.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiii, 370 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
Preface -- Introduction -- Arithmetic Hyperbolic Surfaces -- Spectral Decomposition -- Maass Forms -- The Trace Formula -- Multiplicity of lambda1 and the Selberg Conjecture -- L-Functions and the Selberg Conjecture -- Jacquet-Langlands Correspondence -- Arithmetic Quantum Unique Ergodicity -- Appendices -- References -- Index of notation -- Index -- Index of names.
520
$a
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called "arithmetic hyperbolic surfaces", the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.
650
0
$a
Spectral theory (Mathematics)
$3
524915
650
0
$a
Selberg trace formula.
$3
709261
650
0
$a
Hyperbolic spaces.
$3
555726
650
0
$a
Geometry, Hyperbolic.
$3
532067
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Hyperbolic Geometry.
$3
2072804
650
2 4
$a
Abstract Harmonic Analysis.
$3
891093
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
891276
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Universitext.
$3
812115
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-27666-3
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9278246
電子資源
11.線上閱覽_V
電子書
EB QA685 .B496 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入