語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advances of evolutionary computation...
~
Cuevas, Erik.
FindBook
Google Book
Amazon
博客來
Advances of evolutionary computation = methods and operators /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advances of evolutionary computation/ by Erik Cuevas, Margarita Arimatea Diaz Cortes, Diego Alberto Oliva Navarro.
其他題名:
methods and operators /
作者:
Cuevas, Erik.
其他作者:
Diaz Cortes, Margarita Arimatea.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xiv, 202 p. :ill., digital ;24 cm.
內容註:
Introduction -- A Swarm Global Optimization Algorithm Inspired in the Behavior of the Social-spider -- A States of Matter Algorithm for Global Optimization -- An Algorithm for Global Optimization Inspired by Collective Animal Behavior -- A Bio-inspired Evolutionary Algorithm: Allostatic Optimization -- Optimization Based on the Behavior of Locust Swarms.
Contained By:
Springer eBooks
標題:
Evolutionary computation. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-28503-0
ISBN:
9783319285030$q(electronic bk.)
Advances of evolutionary computation = methods and operators /
Cuevas, Erik.
Advances of evolutionary computation
methods and operators /[electronic resource] :by Erik Cuevas, Margarita Arimatea Diaz Cortes, Diego Alberto Oliva Navarro. - Cham :Springer International Publishing :2016. - xiv, 202 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.6291860-949X ;. - Studies in computational intelligence ;v.379..
Introduction -- A Swarm Global Optimization Algorithm Inspired in the Behavior of the Social-spider -- A States of Matter Algorithm for Global Optimization -- An Algorithm for Global Optimization Inspired by Collective Animal Behavior -- A Bio-inspired Evolutionary Algorithm: Allostatic Optimization -- Optimization Based on the Behavior of Locust Swarms.
The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.
ISBN: 9783319285030$q(electronic bk.)
Standard No.: 10.1007/978-3-319-28503-0doiSubjects--Topical Terms:
582189
Evolutionary computation.
LC Class. No.: QA76.618
Dewey Class. No.: 006.3823
Advances of evolutionary computation = methods and operators /
LDR
:02144nmm a2200325 a 4500
001
2030337
003
DE-He213
005
20160818171414.0
006
m d
007
cr nn 008maaau
008
160908s2016 gw s 0 eng d
020
$a
9783319285030$q(electronic bk.)
020
$a
9783319285023$q(paper)
024
7
$a
10.1007/978-3-319-28503-0
$2
doi
035
$a
978-3-319-28503-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.618
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3823
$2
23
090
$a
QA76.618
$b
.C965 2016
100
1
$a
Cuevas, Erik.
$3
2180030
245
1 0
$a
Advances of evolutionary computation
$h
[electronic resource] :
$b
methods and operators /
$c
by Erik Cuevas, Margarita Arimatea Diaz Cortes, Diego Alberto Oliva Navarro.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiv, 202 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.629
505
0
$a
Introduction -- A Swarm Global Optimization Algorithm Inspired in the Behavior of the Social-spider -- A States of Matter Algorithm for Global Optimization -- An Algorithm for Global Optimization Inspired by Collective Animal Behavior -- A Bio-inspired Evolutionary Algorithm: Allostatic Optimization -- Optimization Based on the Behavior of Locust Swarms.
520
$a
The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.
650
0
$a
Evolutionary computation.
$3
582189
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
700
1
$a
Diaz Cortes, Margarita Arimatea.
$3
2181859
700
1
$a
Oliva Navarro, Diego Alberto.
$3
2181860
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v.379.
$3
1565969
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-28503-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9277601
電子資源
11.線上閱覽_V
電子書
EB QA76.618 .C965 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入