語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Intelligent numerical methods = appl...
~
Anastassiou, George A.
FindBook
Google Book
Amazon
博客來
Intelligent numerical methods = applications to fractional calculus /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Intelligent numerical methods/ by George A. Anastassiou, Ioannis K. Argyros.
其他題名:
applications to fractional calculus /
作者:
Anastassiou, George A.
其他作者:
Argyros, Ioannis K.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
xvi, 423 p. :ill., digital ;24 cm.
內容註:
Newton-Like Methods on Generalized Banach Spaces and Fractional Calculus -- Semilocal Convegence of Newton-Like Methods and Fractional Calculus -- Convergence of Iterative Methods and Generalized Fractional Calculus -- Fixed Point Techniques And Generalized Right Fractional Calculus -- Approximating Fixed Points And K-Fractional Calculus -- Iterative Methods And Generalized G-Fractional Calculus -- Unified Convergence Analysis For Iterative Algorithms And Fractional Calculus -- Convergence Analysis For Extended Iterative Algorithms And Fractional And Vector Calculus -- Convergence Analysis For Extended Iterative Algorithms And Fractional Calculus -- Secant-Like Methods And Fractional Calculus -- Secant-Like Methods And Modified G- Fractional Calculus -- Secant-Like Algorithms And Generalized Fractional Calculus -- Secant-Like Methods And Generalized G-Fractional Calculus Of Canavati-Type -- Iterative Algorithms And Left-Right Caputo Fractional Derivatives -- Iterative Methods On Banach Spaces With A Convergence Structure And Fractional Calculus -- Inexact Gauss-Newton Method For Singular Equations -- The Asymptotic Mesh Independence Principle -- Ball Convergence Of A Sixth Order Iterative Method -- Broyden's Method With Regularily Continuous Divided Differences -- Left General Fractional Monotone Approximation -- Right General Fractional Monotone Approximation Theor -- Left Generalized High Order Fractional Monotone Approximation -- Right Generalized High Order Fractional Monotone Approximation -- Advanced Fractional Taylor's Formulae -- Generalized Canavati Type Fractional Taylor's Formulae.
Contained By:
Springer eBooks
標題:
Fractional calculus. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-26721-0
ISBN:
9783319267210$q(electronic bk.)
Intelligent numerical methods = applications to fractional calculus /
Anastassiou, George A.
Intelligent numerical methods
applications to fractional calculus /[electronic resource] :by George A. Anastassiou, Ioannis K. Argyros. - Cham :Springer International Publishing :2016. - xvi, 423 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.6241860-949X ;. - Studies in computational intelligence ;v.379..
Newton-Like Methods on Generalized Banach Spaces and Fractional Calculus -- Semilocal Convegence of Newton-Like Methods and Fractional Calculus -- Convergence of Iterative Methods and Generalized Fractional Calculus -- Fixed Point Techniques And Generalized Right Fractional Calculus -- Approximating Fixed Points And K-Fractional Calculus -- Iterative Methods And Generalized G-Fractional Calculus -- Unified Convergence Analysis For Iterative Algorithms And Fractional Calculus -- Convergence Analysis For Extended Iterative Algorithms And Fractional And Vector Calculus -- Convergence Analysis For Extended Iterative Algorithms And Fractional Calculus -- Secant-Like Methods And Fractional Calculus -- Secant-Like Methods And Modified G- Fractional Calculus -- Secant-Like Algorithms And Generalized Fractional Calculus -- Secant-Like Methods And Generalized G-Fractional Calculus Of Canavati-Type -- Iterative Algorithms And Left-Right Caputo Fractional Derivatives -- Iterative Methods On Banach Spaces With A Convergence Structure And Fractional Calculus -- Inexact Gauss-Newton Method For Singular Equations -- The Asymptotic Mesh Independence Principle -- Ball Convergence Of A Sixth Order Iterative Method -- Broyden's Method With Regularily Continuous Divided Differences -- Left General Fractional Monotone Approximation -- Right General Fractional Monotone Approximation Theor -- Left Generalized High Order Fractional Monotone Approximation -- Right Generalized High Order Fractional Monotone Approximation -- Advanced Fractional Taylor's Formulae -- Generalized Canavati Type Fractional Taylor's Formulae.
In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integral operators, for the first time studied in the literature. All for the purpose to solve numerically equations whose associated functions can be also non-differentiable in the ordinary sense. That is among others extending the classical Newton method theory which requires usual differentiability of function. Chapters are self-contained and can be read independently and several advanced courses can be taught out of this book. An extensive list of references is given per chapter. The book's results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also to be in all science and engineering libraries.
ISBN: 9783319267210$q(electronic bk.)
Standard No.: 10.1007/978-3-319-26721-0doiSubjects--Topical Terms:
898980
Fractional calculus.
LC Class. No.: QA314
Dewey Class. No.: 515.83
Intelligent numerical methods = applications to fractional calculus /
LDR
:03581nmm a2200325 a 4500
001
2029903
003
DE-He213
005
20160808153538.0
006
m d
007
cr nn 008maaau
008
160908s2016 gw s 0 eng d
020
$a
9783319267210$q(electronic bk.)
020
$a
9783319267203$q(paper)
024
7
$a
10.1007/978-3-319-26721-0
$2
doi
035
$a
978-3-319-26721-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA314
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
515.83
$2
23
090
$a
QA314
$b
.A534 2016
100
1
$a
Anastassiou, George A.
$3
1006424
245
1 0
$a
Intelligent numerical methods
$h
[electronic resource] :
$b
applications to fractional calculus /
$c
by George A. Anastassiou, Ioannis K. Argyros.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xvi, 423 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.624
505
0
$a
Newton-Like Methods on Generalized Banach Spaces and Fractional Calculus -- Semilocal Convegence of Newton-Like Methods and Fractional Calculus -- Convergence of Iterative Methods and Generalized Fractional Calculus -- Fixed Point Techniques And Generalized Right Fractional Calculus -- Approximating Fixed Points And K-Fractional Calculus -- Iterative Methods And Generalized G-Fractional Calculus -- Unified Convergence Analysis For Iterative Algorithms And Fractional Calculus -- Convergence Analysis For Extended Iterative Algorithms And Fractional And Vector Calculus -- Convergence Analysis For Extended Iterative Algorithms And Fractional Calculus -- Secant-Like Methods And Fractional Calculus -- Secant-Like Methods And Modified G- Fractional Calculus -- Secant-Like Algorithms And Generalized Fractional Calculus -- Secant-Like Methods And Generalized G-Fractional Calculus Of Canavati-Type -- Iterative Algorithms And Left-Right Caputo Fractional Derivatives -- Iterative Methods On Banach Spaces With A Convergence Structure And Fractional Calculus -- Inexact Gauss-Newton Method For Singular Equations -- The Asymptotic Mesh Independence Principle -- Ball Convergence Of A Sixth Order Iterative Method -- Broyden's Method With Regularily Continuous Divided Differences -- Left General Fractional Monotone Approximation -- Right General Fractional Monotone Approximation Theor -- Left Generalized High Order Fractional Monotone Approximation -- Right Generalized High Order Fractional Monotone Approximation -- Advanced Fractional Taylor's Formulae -- Generalized Canavati Type Fractional Taylor's Formulae.
520
$a
In this monograph the authors present Newton-type, Newton-like and other numerical methods, which involve fractional derivatives and fractional integral operators, for the first time studied in the literature. All for the purpose to solve numerically equations whose associated functions can be also non-differentiable in the ordinary sense. That is among others extending the classical Newton method theory which requires usual differentiability of function. Chapters are self-contained and can be read independently and several advanced courses can be taught out of this book. An extensive list of references is given per chapter. The book's results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also to be in all science and engineering libraries.
650
0
$a
Fractional calculus.
$3
898980
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
890894
650
2 4
$a
Computational Science and Engineering.
$3
893018
650
2 4
$a
Complexity.
$3
893807
700
1
$a
Argyros, Ioannis K.
$3
731167
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v.379.
$3
1565969
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-26721-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9277167
電子資源
11.線上閱覽_V
電子書
EB QA314 .A534 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入