語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Gauge invariance and Weyl-polymer qu...
~
Strocchi, Franco.
FindBook
Google Book
Amazon
博客來
Gauge invariance and Weyl-polymer quantization
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Gauge invariance and Weyl-polymer quantization/ by Franco Strocchi.
作者:
Strocchi, Franco.
出版者:
Cham :Springer International Publishing : : 2016.,
面頁冊數:
x, 97 p. :ill., digital ;24 cm.
內容註:
Introduction -- Heisenberg quantization and Weyl quantization -- Delocalization, gauge invariance and non-regular representations -- Quantum mechanical gauge models -- Non-regular representations in quantum field theory -- Diffeomorphism invariance and Weyl polymer quantization -- A generalization of Stone-von Neumann theorem -- Bibliography -- Index.
Contained By:
Springer eBooks
標題:
Gauge invariance. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-17695-6
ISBN:
9783319176956$q(electronic bk.)
Gauge invariance and Weyl-polymer quantization
Strocchi, Franco.
Gauge invariance and Weyl-polymer quantization
[electronic resource] /by Franco Strocchi. - Cham :Springer International Publishing :2016. - x, 97 p. :ill., digital ;24 cm. - Lecture notes in physics,v.9040075-8450 ;. - Lecture notes in physics ;715..
Introduction -- Heisenberg quantization and Weyl quantization -- Delocalization, gauge invariance and non-regular representations -- Quantum mechanical gauge models -- Non-regular representations in quantum field theory -- Diffeomorphism invariance and Weyl polymer quantization -- A generalization of Stone-von Neumann theorem -- Bibliography -- Index.
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators) However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2π. Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group. Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states.
ISBN: 9783319176956$q(electronic bk.)
Standard No.: 10.1007/978-3-319-17695-6doiSubjects--Topical Terms:
716126
Gauge invariance.
LC Class. No.: QC174.45
Dewey Class. No.: 530.12
Gauge invariance and Weyl-polymer quantization
LDR
:03100nmm a2200325 a 4500
001
2029552
003
DE-He213
005
20160802140948.0
006
m d
007
cr nn 008maaau
008
160908s2016 gw s 0 eng d
020
$a
9783319176956$q(electronic bk.)
020
$a
9783319176949$q(paper)
024
7
$a
10.1007/978-3-319-17695-6
$2
doi
035
$a
978-3-319-17695-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.45
072
7
$a
PHQ
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
082
0 4
$a
530.12
$2
23
090
$a
QC174.45
$b
.S919 2016
100
1
$a
Strocchi, Franco.
$3
894025
245
1 0
$a
Gauge invariance and Weyl-polymer quantization
$h
[electronic resource] /
$c
by Franco Strocchi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
x, 97 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in physics,
$x
0075-8450 ;
$v
v.904
505
0
$a
Introduction -- Heisenberg quantization and Weyl quantization -- Delocalization, gauge invariance and non-regular representations -- Quantum mechanical gauge models -- Non-regular representations in quantum field theory -- Diffeomorphism invariance and Weyl polymer quantization -- A generalization of Stone-von Neumann theorem -- Bibliography -- Index.
520
$a
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators) However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2π. Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group. Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states.
650
0
$a
Gauge invariance.
$3
716126
650
0
$a
Physics.
$3
516296
650
0
$a
Mathematical physics.
$3
516853
650
0
$a
Quantum field theory.
$3
523766
650
0
$a
String models.
$3
578805
650
0
$a
Quantum theory.
$3
516552
650
0
$a
Particles (Nuclear physics)
$3
535550
650
2 4
$a
Quantum Physics.
$3
893952
650
2 4
$a
Mathematical Physics.
$3
1542352
650
2 4
$a
Quantum Field Theories, String Theory.
$3
1067067
650
2 4
$a
Elementary Particles, Quantum Field Theory.
$3
894026
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in physics ;
$v
715.
$x
1616-6361
$3
1314286
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-17695-6
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9276816
電子資源
11.線上閱覽_V
電子書
EB QC174.45 .S919 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入