Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
New approaches to nonlinear waves
~
Tobisch, Elena.
Linked to FindBook
Google Book
Amazon
博客來
New approaches to nonlinear waves
Record Type:
Electronic resources : Monograph/item
Title/Author:
New approaches to nonlinear waves/ edited by Elena Tobisch.
other author:
Tobisch, Elena.
Published:
Cham :Springer International Publishing : : 2016.,
Description:
xv, 298 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
Introduction (E. Tobisch) -- Brief historical overview -- Main notions -- Resonant interactions -- Modulation instability -- Frameworks -- Reality check -- References -- The effective equation method (Sergei Kuksin and Alberto Maiocchi) -- Introduction -- How to construct the effective equation -- Structure of resonances -- CHM: resonance clustering -- Concluding remarks -- References -- On the discovery of the steady-state resonant water waves (Shijun Liao, Dali Xu and Zeng Liu) -- Introduction -- Basic ideas of homotopy analysis method -- Steady-state resonant waves in constant-depth water -- Experimental observation -- Concluding remarks -- References -- Modulational instability in equations of KdV type (Jared C. Bronski, Vera Mikyoung Hur and Mathew A. Johnson) -- Introduction -- Periodic traveling waves of generalized KdV equations -- Formal asymptotics and Whitham’s modulation theory -- Rigorous theory of modulational instability -- Applications -- Concluding remarks -- References -- Modulational instability and rogue waves in shallow water models (R. Grimshaw, K. W. Chow and H. N. Chan) -- Introduction -- Korteweg-de Vries equations -- Boussinesq model -- Hirota-Satsuma model -- Discussion -- References -- Hamiltonian framework for short optical pulses (Shalva Amiranashvili) -- Introduction -- Poisson brackets -- Pulses in optical fibers -- Hamiltonian description of pulses -- Concluding remarks -- References -- Modeling water waves beyond perturbations (Didier Clamond and Denys Dutykh) -- Introduction -- Preliminaries -- Variational formulations -- Examples -- Discussion -- References -- Quantitative Analysis of Nonlinear Water-Waves: a Perspective of an Experimentalist (Lev Shemer) -- Introduction -- The experimental facilities -- The Nonlinear Schrodinger Equation -- The Modified Nonlinear Schrodinger (Dysthe) Equation -- The Spatial Zakharov Equation -- Statistics of nonlinear unidirectional water waves -- Discussion and Conclusions -- References.
Contained By:
Springer eBooks
Subject:
Nonlinear waves. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-20690-5
ISBN:
9783319206905$q(electronic bk.)
New approaches to nonlinear waves
New approaches to nonlinear waves
[electronic resource] /edited by Elena Tobisch. - Cham :Springer International Publishing :2016. - xv, 298 p. :ill. (some col.), digital ;24 cm. - Lecture notes in physics,v.9080075-8450 ;. - Lecture notes in physics ;715..
Introduction (E. Tobisch) -- Brief historical overview -- Main notions -- Resonant interactions -- Modulation instability -- Frameworks -- Reality check -- References -- The effective equation method (Sergei Kuksin and Alberto Maiocchi) -- Introduction -- How to construct the effective equation -- Structure of resonances -- CHM: resonance clustering -- Concluding remarks -- References -- On the discovery of the steady-state resonant water waves (Shijun Liao, Dali Xu and Zeng Liu) -- Introduction -- Basic ideas of homotopy analysis method -- Steady-state resonant waves in constant-depth water -- Experimental observation -- Concluding remarks -- References -- Modulational instability in equations of KdV type (Jared C. Bronski, Vera Mikyoung Hur and Mathew A. Johnson) -- Introduction -- Periodic traveling waves of generalized KdV equations -- Formal asymptotics and Whitham’s modulation theory -- Rigorous theory of modulational instability -- Applications -- Concluding remarks -- References -- Modulational instability and rogue waves in shallow water models (R. Grimshaw, K. W. Chow and H. N. Chan) -- Introduction -- Korteweg-de Vries equations -- Boussinesq model -- Hirota-Satsuma model -- Discussion -- References -- Hamiltonian framework for short optical pulses (Shalva Amiranashvili) -- Introduction -- Poisson brackets -- Pulses in optical fibers -- Hamiltonian description of pulses -- Concluding remarks -- References -- Modeling water waves beyond perturbations (Didier Clamond and Denys Dutykh) -- Introduction -- Preliminaries -- Variational formulations -- Examples -- Discussion -- References -- Quantitative Analysis of Nonlinear Water-Waves: a Perspective of an Experimentalist (Lev Shemer) -- Introduction -- The experimental facilities -- The Nonlinear Schrodinger Equation -- The Modified Nonlinear Schrodinger (Dysthe) Equation -- The Spatial Zakharov Equation -- Statistics of nonlinear unidirectional water waves -- Discussion and Conclusions -- References.
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the applicability of these novel methods and approaches to a wide class of evolutionary dispersive PDEs, e.g. equations from Benjamin-Oro, Boussinesq, Hasegawa-Mima, KdV-type, Klein-Gordon, NLS-type, Serre, Shamel , Whitham and Zakharov. This makes the book interesting for professionals in the fields of nonlinear physics, applied mathematics and fluid mechanics as well as students who are studying these subjects. The book can also be used as a basis for a one-semester lecture course in applied mathematics or mathematical physics.
ISBN: 9783319206905$q(electronic bk.)
Standard No.: 10.1007/978-3-319-20690-5doiSubjects--Topical Terms:
671954
Nonlinear waves.
LC Class. No.: QA927
Dewey Class. No.: 530.124
New approaches to nonlinear waves
LDR
:04534nmm a2200325 a 4500
001
2028704
003
DE-He213
005
20160714142554.0
006
m d
007
cr nn 008maaau
008
160908s2016 gw s 0 eng d
020
$a
9783319206905$q(electronic bk.)
020
$a
9783319206899$q(paper)
024
7
$a
10.1007/978-3-319-20690-5
$2
doi
035
$a
978-3-319-20690-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA927
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
082
0 4
$a
530.124
$2
23
090
$a
QA927
$b
.N532 2016
245
0 0
$a
New approaches to nonlinear waves
$h
[electronic resource] /
$c
edited by Elena Tobisch.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xv, 298 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in physics,
$x
0075-8450 ;
$v
v.908
505
0
$a
Introduction (E. Tobisch) -- Brief historical overview -- Main notions -- Resonant interactions -- Modulation instability -- Frameworks -- Reality check -- References -- The effective equation method (Sergei Kuksin and Alberto Maiocchi) -- Introduction -- How to construct the effective equation -- Structure of resonances -- CHM: resonance clustering -- Concluding remarks -- References -- On the discovery of the steady-state resonant water waves (Shijun Liao, Dali Xu and Zeng Liu) -- Introduction -- Basic ideas of homotopy analysis method -- Steady-state resonant waves in constant-depth water -- Experimental observation -- Concluding remarks -- References -- Modulational instability in equations of KdV type (Jared C. Bronski, Vera Mikyoung Hur and Mathew A. Johnson) -- Introduction -- Periodic traveling waves of generalized KdV equations -- Formal asymptotics and Whitham’s modulation theory -- Rigorous theory of modulational instability -- Applications -- Concluding remarks -- References -- Modulational instability and rogue waves in shallow water models (R. Grimshaw, K. W. Chow and H. N. Chan) -- Introduction -- Korteweg-de Vries equations -- Boussinesq model -- Hirota-Satsuma model -- Discussion -- References -- Hamiltonian framework for short optical pulses (Shalva Amiranashvili) -- Introduction -- Poisson brackets -- Pulses in optical fibers -- Hamiltonian description of pulses -- Concluding remarks -- References -- Modeling water waves beyond perturbations (Didier Clamond and Denys Dutykh) -- Introduction -- Preliminaries -- Variational formulations -- Examples -- Discussion -- References -- Quantitative Analysis of Nonlinear Water-Waves: a Perspective of an Experimentalist (Lev Shemer) -- Introduction -- The experimental facilities -- The Nonlinear Schrodinger Equation -- The Modified Nonlinear Schrodinger (Dysthe) Equation -- The Spatial Zakharov Equation -- Statistics of nonlinear unidirectional water waves -- Discussion and Conclusions -- References.
520
$a
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the applicability of these novel methods and approaches to a wide class of evolutionary dispersive PDEs, e.g. equations from Benjamin-Oro, Boussinesq, Hasegawa-Mima, KdV-type, Klein-Gordon, NLS-type, Serre, Shamel , Whitham and Zakharov. This makes the book interesting for professionals in the fields of nonlinear physics, applied mathematics and fluid mechanics as well as students who are studying these subjects. The book can also be used as a basis for a one-semester lecture course in applied mathematics or mathematical physics.
650
0
$a
Nonlinear waves.
$3
671954
650
1 4
$a
Physics.
$3
516296
650
2 4
$a
Theoretical, Mathematical and Computational Physics.
$3
1066859
650
2 4
$a
Classical Continuum Physics.
$3
1066687
650
2 4
$a
Statistical Physics, Dynamical Systems and Complexity.
$3
1066325
650
2 4
$a
Geophysics and Environmental Physics.
$3
1530865
700
1
$a
Tobisch, Elena.
$3
2179260
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in physics ;
$v
715.
$x
1616-6361
$3
1314286
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-20690-5
950
$a
Physics and Astronomy (Springer-11651)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9275968
電子資源
11.線上閱覽_V
電子書
EB QA927 .N532 2016
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login