Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Branching random walks = Ecole d'Ete...
~
Shi, Zhan.
Linked to FindBook
Google Book
Amazon
博客來
Branching random walks = Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Branching random walks/ by Zhan Shi.
Reminder of title:
Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /
Author:
Shi, Zhan.
Published:
Cham :Springer International Publishing : : 2015.,
Description:
x, 133 p. :ill. (some col.), digital ;24 cm.
[NT 15003449]:
I Introduction -- II Galton–Watson trees -- III Branching random walks and martingales -- IV The spinal decomposition theorem -- V Applications of the spinal decomposition theorem -- VI Branching random walks with selection -- VII Biased random walks on Galton–Watson trees -- A Sums of i.i.d. random variables -- References.
Contained By:
Springer eBooks
Subject:
Random walks (Mathematics) -
Online resource:
http://dx.doi.org/10.1007/978-3-319-25372-5
ISBN:
9783319253725$q(electronic bk.)
Branching random walks = Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /
Shi, Zhan.
Branching random walks
Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /[electronic resource] :by Zhan Shi. - Cham :Springer International Publishing :2015. - x, 133 p. :ill. (some col.), digital ;24 cm. - Lecture notes in mathematics,21510075-8434 ;. - Lecture notes in mathematics ;2046..
I Introduction -- II Galton–Watson trees -- III Branching random walks and martingales -- IV The spinal decomposition theorem -- V Applications of the spinal decomposition theorem -- VI Branching random walks with selection -- VII Biased random walks on Galton–Watson trees -- A Sums of i.i.d. random variables -- References.
Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.
ISBN: 9783319253725$q(electronic bk.)
Standard No.: 10.1007/978-3-319-25372-5doiSubjects--Topical Terms:
532102
Random walks (Mathematics)
LC Class. No.: QA274.73
Dewey Class. No.: 519.282
Branching random walks = Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /
LDR
:01950nmm a2200337 a 4500
001
2016667
003
DE-He213
005
20160527140325.0
006
m d
007
cr nn 008maaau
008
160613s2015 gw s 0 eng d
020
$a
9783319253725$q(electronic bk.)
020
$a
9783319253718$q(paper)
024
7
$a
10.1007/978-3-319-25372-5
$2
doi
035
$a
978-3-319-25372-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.73
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.282
$2
23
090
$a
QA274.73
$b
.S555 2015
100
1
$a
Shi, Zhan.
$3
2165812
245
1 0
$a
Branching random walks
$h
[electronic resource] :
$b
Ecole d'Ete de Probabilites de Saint-Flour XLII - 2012 /
$c
by Zhan Shi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
x, 133 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2151
505
0
$a
I Introduction -- II Galton–Watson trees -- III Branching random walks and martingales -- IV The spinal decomposition theorem -- V Applications of the spinal decomposition theorem -- VI Branching random walks with selection -- VII Biased random walks on Galton–Watson trees -- A Sums of i.i.d. random variables -- References.
520
$a
Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.
650
0
$a
Random walks (Mathematics)
$3
532102
650
0
$a
Branching processes
$v
Congresses.
$3
2165813
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2046.
$3
1534285
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-25372-5
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9275661
電子資源
11.線上閱覽_V
電子書
EB QA274.73 .S555 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login