語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Dirichlet forms methods for Poisson ...
~
Bouleau, Nicolas.
FindBook
Google Book
Amazon
博客來
Dirichlet forms methods for Poisson point measures and Levy processes = with emphasis on the creation-annihilation techniques /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Dirichlet forms methods for Poisson point measures and Levy processes/ by Nicolas Bouleau, Laurent Denis.
其他題名:
with emphasis on the creation-annihilation techniques /
作者:
Bouleau, Nicolas.
其他作者:
Denis, Laurent.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xviii, 323 p. :ill., digital ;24 cm.
內容註:
Introduction -- Notations and Basic Analytical Properties -- 1.Reminders on Poisson Random Measures, Levy Processes and Dirichlet Forms -- 2.Dirichlet Forms and (EID) -- 3.Construction of the Dirichlet Structure on the Upper Space -- 4.The Lent Particle Formula and Related Formulae -- 5.Sobolev Spaces and Distributions on Poisson Space -- 6 -- Space-Time Setting and Processes -- 7.Applications to Stochastic Differential Equations driven by a Random Measure -- 8.Affine Processes, Rates Models -- 9.Non Poissonian Cases -- A.Error Structures -- B.The Co-Area Formula -- References.
Contained By:
Springer eBooks
標題:
Dirichlet forms. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-25820-1
ISBN:
9783319258201$q(electronic bk.)
Dirichlet forms methods for Poisson point measures and Levy processes = with emphasis on the creation-annihilation techniques /
Bouleau, Nicolas.
Dirichlet forms methods for Poisson point measures and Levy processes
with emphasis on the creation-annihilation techniques /[electronic resource] :by Nicolas Bouleau, Laurent Denis. - Cham :Springer International Publishing :2015. - xviii, 323 p. :ill., digital ;24 cm. - Probability theory and stochastic modelling,v.762199-3130 ;. - Probability theory and stochastic modelling ;v.70..
Introduction -- Notations and Basic Analytical Properties -- 1.Reminders on Poisson Random Measures, Levy Processes and Dirichlet Forms -- 2.Dirichlet Forms and (EID) -- 3.Construction of the Dirichlet Structure on the Upper Space -- 4.The Lent Particle Formula and Related Formulae -- 5.Sobolev Spaces and Distributions on Poisson Space -- 6 -- Space-Time Setting and Processes -- 7.Applications to Stochastic Differential Equations driven by a Random Measure -- 8.Affine Processes, Rates Models -- 9.Non Poissonian Cases -- A.Error Structures -- B.The Co-Area Formula -- References.
A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the "lent particle method" it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics) Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Levy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calculus theory. This book will be of interest to researchers and graduate students in the fields of stochastic analysis and finance, and in the domain of statistical physics. Professors preparing courses on these topics will also find it useful. The prerequisite is a knowledge of probability theory.
ISBN: 9783319258201$q(electronic bk.)
Standard No.: 10.1007/978-3-319-25820-1doiSubjects--Topical Terms:
661784
Dirichlet forms.
LC Class. No.: QA274.2 / .B684 2015
Dewey Class. No.: 519.22
Dirichlet forms methods for Poisson point measures and Levy processes = with emphasis on the creation-annihilation techniques /
LDR
:03043nmm a2200337 a 4500
001
2016640
003
DE-He213
005
20160526131757.0
006
m d
007
cr nn 008maaau
008
160613s2015 gw s 0 eng d
020
$a
9783319258201$q(electronic bk.)
020
$a
9783319258188$q(paper)
024
7
$a
10.1007/978-3-319-25820-1
$2
doi
035
$a
978-3-319-25820-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.2
$b
.B684 2015
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.22
$2
23
090
$a
QA274.2
$b
.B763 2015
100
1
$a
Bouleau, Nicolas.
$3
749170
245
1 0
$a
Dirichlet forms methods for Poisson point measures and Levy processes
$h
[electronic resource] :
$b
with emphasis on the creation-annihilation techniques /
$c
by Nicolas Bouleau, Laurent Denis.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xviii, 323 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Probability theory and stochastic modelling,
$x
2199-3130 ;
$v
v.76
505
0
$a
Introduction -- Notations and Basic Analytical Properties -- 1.Reminders on Poisson Random Measures, Levy Processes and Dirichlet Forms -- 2.Dirichlet Forms and (EID) -- 3.Construction of the Dirichlet Structure on the Upper Space -- 4.The Lent Particle Formula and Related Formulae -- 5.Sobolev Spaces and Distributions on Poisson Space -- 6 -- Space-Time Setting and Processes -- 7.Applications to Stochastic Differential Equations driven by a Random Measure -- 8.Affine Processes, Rates Models -- 9.Non Poissonian Cases -- A.Error Structures -- B.The Co-Area Formula -- References.
520
$a
A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the "lent particle method" it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics) Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Levy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calculus theory. This book will be of interest to researchers and graduate students in the fields of stochastic analysis and finance, and in the domain of statistical physics. Professors preparing courses on these topics will also find it useful. The prerequisite is a knowledge of probability theory.
650
0
$a
Dirichlet forms.
$3
661784
650
0
$a
Poisson processes.
$3
697133
650
0
$a
Levy processes.
$3
747418
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
891080
700
1
$a
Denis, Laurent.
$3
2165784
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Probability theory and stochastic modelling ;
$v
v.70.
$3
2072045
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-25820-1
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9275634
電子資源
11.線上閱覽_V
電子書
EB QA274.2 .B763 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入