Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Hierarchical matrices = algorithms a...
~
Hackbusch, Wolfgang.
Linked to FindBook
Google Book
Amazon
博客來
Hierarchical matrices = algorithms and analysis /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Hierarchical matrices/ by Wolfgang Hackbusch.
Reminder of title:
algorithms and analysis /
Author:
Hackbusch, Wolfgang.
Published:
Berlin, Heidelberg :Springer Berlin Heidelberg : : 2015.,
Description:
xxv, 511 p. :ill., digital ;24 cm.
[NT 15003449]:
Preface -- Part I: Introductory and Preparatory Topics -- 1. Introduction -- 2. Rank-r Matrices -- 3. Introductory Example -- 4. Separable Expansions and Low-Rank Matrices -- 5. Matrix Partition -- Part II: H-Matrices and Their Arithmetic -- 6. Definition and Properties of Hierarchical Matrices -- 7. Formatted Matrix Operations for Hierarchical Matrices -- 8. H2-Matrices -- 9. Miscellaneous Supplements -- Part III: Applications -- 10. Applications to Discretised Integral Operators -- 11. Applications to Finite Element Matrices -- 12. Inversion with Partial Evaluation -- 13. Eigenvalue Problems -- 14. Matrix Functions -- 15. Matrix Equations -- 16. Tensor Spaces -- Part IV: Appendices -- A. Graphs and Trees -- B. Polynomials -- C. Linear Algebra and Functional Analysis -- D. Sinc Functions and Exponential Sums -- E. Asymptotically Smooth Functions -- References -- Index.
Contained By:
Springer eBooks
Subject:
Matrices. -
Online resource:
http://dx.doi.org/10.1007/978-3-662-47324-5
ISBN:
9783662473245$q(electronic bk.)
Hierarchical matrices = algorithms and analysis /
Hackbusch, Wolfgang.
Hierarchical matrices
algorithms and analysis /[electronic resource] :by Wolfgang Hackbusch. - Berlin, Heidelberg :Springer Berlin Heidelberg :2015. - xxv, 511 p. :ill., digital ;24 cm. - Springer series in computational mathematics,v.490179-3632 ;. - Springer series in computational mathematics ;42..
Preface -- Part I: Introductory and Preparatory Topics -- 1. Introduction -- 2. Rank-r Matrices -- 3. Introductory Example -- 4. Separable Expansions and Low-Rank Matrices -- 5. Matrix Partition -- Part II: H-Matrices and Their Arithmetic -- 6. Definition and Properties of Hierarchical Matrices -- 7. Formatted Matrix Operations for Hierarchical Matrices -- 8. H2-Matrices -- 9. Miscellaneous Supplements -- Part III: Applications -- 10. Applications to Discretised Integral Operators -- 11. Applications to Finite Element Matrices -- 12. Inversion with Partial Evaluation -- 13. Eigenvalue Problems -- 14. Matrix Functions -- 15. Matrix Equations -- 16. Tensor Spaces -- Part IV: Appendices -- A. Graphs and Trees -- B. Polynomials -- C. Linear Algebra and Functional Analysis -- D. Sinc Functions and Exponential Sums -- E. Asymptotically Smooth Functions -- References -- Index.
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
ISBN: 9783662473245$q(electronic bk.)
Standard No.: 10.1007/978-3-662-47324-5doiSubjects--Topical Terms:
516894
Matrices.
LC Class. No.: QA188
Dewey Class. No.: 512.9434
Hierarchical matrices = algorithms and analysis /
LDR
:03035nmm a2200337 a 4500
001
2016521
003
DE-He213
005
20160513091634.0
006
m d
007
cr nn 008maaau
008
160613s2015 gw s 0 eng d
020
$a
9783662473245$q(electronic bk.)
020
$a
9783662473238$q(paper)
024
7
$a
10.1007/978-3-662-47324-5
$2
doi
035
$a
978-3-662-47324-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA188
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
512.9434
$2
23
090
$a
QA188
$b
.H118 2015
100
1
$a
Hackbusch, Wolfgang.
$3
1086630
245
1 0
$a
Hierarchical matrices
$h
[electronic resource] :
$b
algorithms and analysis /
$c
by Wolfgang Hackbusch.
260
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Springer,
$c
2015.
300
$a
xxv, 511 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer series in computational mathematics,
$x
0179-3632 ;
$v
v.49
505
0
$a
Preface -- Part I: Introductory and Preparatory Topics -- 1. Introduction -- 2. Rank-r Matrices -- 3. Introductory Example -- 4. Separable Expansions and Low-Rank Matrices -- 5. Matrix Partition -- Part II: H-Matrices and Their Arithmetic -- 6. Definition and Properties of Hierarchical Matrices -- 7. Formatted Matrix Operations for Hierarchical Matrices -- 8. H2-Matrices -- 9. Miscellaneous Supplements -- Part III: Applications -- 10. Applications to Discretised Integral Operators -- 11. Applications to Finite Element Matrices -- 12. Inversion with Partial Evaluation -- 13. Eigenvalue Problems -- 14. Matrix Functions -- 15. Matrix Equations -- 16. Tensor Spaces -- Part IV: Appendices -- A. Graphs and Trees -- B. Polynomials -- C. Linear Algebra and Functional Analysis -- D. Sinc Functions and Exponential Sums -- E. Asymptotically Smooth Functions -- References -- Index.
520
$a
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
650
0
$a
Matrices.
$3
516894
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Numerical Analysis.
$3
892626
650
2 4
$a
Algorithms.
$3
536374
650
2 4
$a
Partial Differential Equations.
$3
890899
650
2 4
$a
Integral Equations.
$3
897446
650
2 4
$a
Linear and Multilinear Algebras, Matrix Theory.
$3
891082
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Springer series in computational mathematics ;
$v
42.
$3
1568666
856
4 0
$u
http://dx.doi.org/10.1007/978-3-662-47324-5
950
$a
Mathematics and Statistics (Springer-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9275515
電子資源
11.線上閱覽_V
電子書
EB QA188 .H118 2015
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login