語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The convergence problem for dissipat...
~
Haraux, Alain.
FindBook
Google Book
Amazon
博客來
The convergence problem for dissipative autonomous systems = classical methods and recent advances /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The convergence problem for dissipative autonomous systems/ by Alain Haraux, Mohamed Ali Jendoubi.
其他題名:
classical methods and recent advances /
作者:
Haraux, Alain.
其他作者:
Jendoubi, Mohamed Ali.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xii, 142 p. :ill., digital ;24 cm.
內容註:
1 Introduction -- 2 Some basic tools -- 3 Background results on Evolution Equations -- 4 Uniformly damped linear semi-groups -- 5 Generalities on dynamical systems -- 6 The linearization method -- 7 Gradient-like systems -- 8 Liapunov's second method - invariance principle -- 9 Some basic examples -- 10 The convergence problem in finite dimensions -- 11 The infinite dimensional case -- 12 Variants and additional results.
Contained By:
Springer eBooks
標題:
Convergence. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-23407-6
ISBN:
9783319234076
The convergence problem for dissipative autonomous systems = classical methods and recent advances /
Haraux, Alain.
The convergence problem for dissipative autonomous systems
classical methods and recent advances /[electronic resource] :by Alain Haraux, Mohamed Ali Jendoubi. - Cham :Springer International Publishing :2015. - xii, 142 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
1 Introduction -- 2 Some basic tools -- 3 Background results on Evolution Equations -- 4 Uniformly damped linear semi-groups -- 5 Generalities on dynamical systems -- 6 The linearization method -- 7 Gradient-like systems -- 8 Liapunov's second method - invariance principle -- 9 Some basic examples -- 10 The convergence problem in finite dimensions -- 11 The infinite dimensional case -- 12 Variants and additional results.
The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.
ISBN: 9783319234076
Standard No.: 10.1007/978-3-319-23407-6doiSubjects--Topical Terms:
589031
Convergence.
LC Class. No.: QA295
Dewey Class. No.: 515.24
The convergence problem for dissipative autonomous systems = classical methods and recent advances /
LDR
:02727nmm a2200325 a 4500
001
2013545
003
DE-He213
005
20160414165556.0
006
m d
007
cr nn 008maaau
008
160518s2015 gw s 0 eng d
020
$a
9783319234076
$q
(electronic bk.)
020
$a
9783319234069
$q
(paper)
024
7
$a
10.1007/978-3-319-23407-6
$2
doi
035
$a
978-3-319-23407-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA295
072
7
$a
PBWR
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.24
$2
23
090
$a
QA295
$b
.H254 2015
100
1
$a
Haraux, Alain.
$3
2163009
245
1 4
$a
The convergence problem for dissipative autonomous systems
$h
[electronic resource] :
$b
classical methods and recent advances /
$c
by Alain Haraux, Mohamed Ali Jendoubi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xii, 142 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
1 Introduction -- 2 Some basic tools -- 3 Background results on Evolution Equations -- 4 Uniformly damped linear semi-groups -- 5 Generalities on dynamical systems -- 6 The linearization method -- 7 Gradient-like systems -- 8 Liapunov's second method - invariance principle -- 9 Some basic examples -- 10 The convergence problem in finite dimensions -- 11 The infinite dimensional case -- 12 Variants and additional results.
520
$a
The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.
650
0
$a
Convergence.
$3
589031
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
891276
650
2 4
$a
Partial Differential Equations.
$3
890899
650
2 4
$a
Functional Analysis.
$3
893943
650
2 4
$a
Operator Theory.
$3
897311
650
2 4
$a
Ordinary Differential Equations.
$3
891264
700
1
$a
Jendoubi, Mohamed Ali.
$3
2163010
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
1566700
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-23407-6
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9275123
電子資源
11.線上閱覽_V
電子書
EB QA295 .H254 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入