語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematics of aperiodic order
~
Kellendonk, Johannes.
FindBook
Google Book
Amazon
博客來
Mathematics of aperiodic order
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Mathematics of aperiodic order/ edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien.
其他作者:
Kellendonk, Johannes.
出版者:
Basel :Springer Basel : : 2015.,
面頁冊數:
xii, 428 p. :ill., digital ;24 cm.
內容註:
Preface -- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures -- 2.S. Akiyama, M. Barge, V. Berthe, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture -- 3. L. Sadun: Cohomology of Hierarchical Tilings -- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology -- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets -- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets -- 7.N. Priebe Frank: Tilings with Infinite Local Complexity -- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings -- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrodinger Operators Arising in the Study of Quasicrystals -- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics -- 11.J.V. Bellissard: Delone Sets and Material Science: a Program.
Contained By:
Springer eBooks
標題:
Aperiodic tilings. -
電子資源:
http://dx.doi.org/10.1007/978-3-0348-0903-0
ISBN:
9783034809030 (electronic bk.)
Mathematics of aperiodic order
Mathematics of aperiodic order
[electronic resource] /edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien. - Basel :Springer Basel :2015. - xii, 428 p. :ill., digital ;24 cm. - Progress in mathematics,v.3090743-1643 ;. - Progress in mathematics ;v.295..
Preface -- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures -- 2.S. Akiyama, M. Barge, V. Berthe, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture -- 3. L. Sadun: Cohomology of Hierarchical Tilings -- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology -- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets -- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets -- 7.N. Priebe Frank: Tilings with Infinite Local Complexity -- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings -- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrodinger Operators Arising in the Study of Quasicrystals -- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics -- 11.J.V. Bellissard: Delone Sets and Material Science: a Program.
What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the - later Nobel prize-winning - discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrodinger operators, and connections to arithmetic number theory.
ISBN: 9783034809030 (electronic bk.)
Standard No.: 10.1007/978-3-0348-0903-0doiSubjects--Topical Terms:
952147
Aperiodic tilings.
LC Class. No.: QA640.72
Dewey Class. No.: 516.11
Mathematics of aperiodic order
LDR
:03239nam a2200349 a 4500
001
2007798
003
DE-He213
005
20160122091732.0
006
m d
007
cr nn 008maaau
008
160219s2015 sz s 0 eng d
020
$a
9783034809030 (electronic bk.)
020
$a
9783034809023 (paper)
024
7
$a
10.1007/978-3-0348-0903-0
$2
doi
035
$a
978-3-0348-0903-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA640.72
072
7
$a
PBMW
$2
bicssc
072
7
$a
PBD
$2
bicssc
072
7
$a
MAT012020
$2
bisacsh
072
7
$a
MAT008000
$2
bisacsh
082
0 4
$a
516.11
$2
23
090
$a
QA640.72
$b
.M426 2015
245
0 0
$a
Mathematics of aperiodic order
$h
[electronic resource] /
$c
edited by Johannes Kellendonk, Daniel Lenz, Jean Savinien.
260
$a
Basel :
$b
Springer Basel :
$b
Imprint: Birkhauser,
$c
2015.
300
$a
xii, 428 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Progress in mathematics,
$x
0743-1643 ;
$v
v.309
505
0
$a
Preface -- 1.M. Baake, M. Birkner and U. Grimm: Non-Periodic Systems with Continuous Diffraction Measures -- 2.S. Akiyama, M. Barge, V. Berthe, J.-Y. Lee and A. Siegel: On the Pisot Substitution Conjecture -- 3. L. Sadun: Cohomology of Hierarchical Tilings -- 4.J. Hunton: Spaces of Projection Method Patterns and their Cohomology -- 5.J.-B. Aujogue, M. Barge, J. Kellendonk, D. Lenz: Equicontinuous Factors, Proximality and Ellis Semigroup for Delone Sets -- 6.J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite: Linearly Repetitive Delone Sets -- 7.N. Priebe Frank: Tilings with Infinite Local Complexity -- 8. A.Julien, J. Kellendonk and J. Savinien: On the Noncommutative Geometry of Tilings -- 9.D. Damanik, M. Embree and A. Gorodetski: Spectral Properties of Schrodinger Operators Arising in the Study of Quasicrystals -- 10.S. Puzynina and L.Q. Zamboni: Additive Properties of Sets and Substitutive Dynamics -- 11.J.V. Bellissard: Delone Sets and Material Science: a Program.
520
$a
What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the - later Nobel prize-winning - discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomology and non-commutative geometry, the Pisot substitution conjecture, aperiodic Schrodinger operators, and connections to arithmetic number theory.
650
0
$a
Aperiodic tilings.
$3
952147
650
0
$a
Aperiodicity.
$3
887785
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Convex and Discrete Geometry.
$3
893686
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
891276
650
2 4
$a
Operator Theory.
$3
897311
650
2 4
$a
Number Theory.
$3
891078
650
2 4
$a
Global Analysis and Analysis on Manifolds.
$3
891107
700
1
$a
Kellendonk, Johannes.
$3
2156824
700
1
$a
Lenz, Daniel.
$3
2156825
700
1
$a
Savinien, Jean.
$3
2156826
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Progress in mathematics ;
$v
v.295.
$3
1566157
856
4 0
$u
http://dx.doi.org/10.1007/978-3-0348-0903-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9273503
電子資源
11.線上閱覽_V
電子書
EB QA640.72 .M426 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入