語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Applications of combinatorial optimi...
~
Paschos, Vangelis Th.
FindBook
Google Book
Amazon
博客來
Applications of combinatorial optimization
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Applications of combinatorial optimization/ edited by Vangelis Th. Paschos.
其他作者:
Paschos, Vangelis Th.
出版者:
London ;Wiley, : 2014.,
面頁冊數:
1 online resource (449 p.)
內容註:
Cover; Title Page; Copyright; Contents; Preface; Chapter 1: Airline Crew Pairing Optimization; 1.1. Introduction; 1.2. Definition of the problem; 1.2.1. Constructing subnetworks; 1.2.2. Pairing costs; 1.2.3. Model; 1.2.4. Case without resource constraints; 1.3. Solution approaches; 1.3.1. Decomposition principles; 1.3.2. Column generation, master problem and subproblem; 1.3.3. Branching methods for finding integer solutions; 1.4. Solving the subproblem for column generation; 1.4.1. Mathematical formulation; 1.4.2. General principle of effective label generation.
內容註:
1.4.3. Case of one single resource: the bucket method1.4.4. Case of many resources: reduction of the resource space; 1.4.4.1. Reduction principle; 1.4.4.2. Approach based on the Lagrangian relaxation; 1.4.4.3. Approach based on the surrogate relaxation; 1.5. Conclusion; 1.6. Bibliography; Chapter 2: The Task Allocation Problem; 2.1. Presentation; 2.2. Definitions and modeling; 2.2.1. Definitions; 2.2.2. The processors; 2.2.3. Communications; 2.2.4. Tasks; 2.2.5. Allocation types; 2.2.5.1. Static allocation; 2.2.5.2. Dynamic allocation; 2.2.5.3. With or without pre-emption.
內容註:
2.2.5.4. Task duplication2.2.6. Allocation/scheduling; 2.2.7. Modeling; 2.2.7.1. Modeling costs; 2.2.7.2. Constraints; 2.2.7.3. Objectives of the allocation; 2.2.7.3.1. Minimizing the execution duration; 2.2.7.3.2. Minimizing the global execution and communication cost; 2.2.7.3.3. Load balancing; 2.3. Review of the main works; 2.3.1. Polynomial cases; 2.3.1.1. Two-processor cases; 2.3.1.2. Tree case; 2.3.1.3. Other structures; 2.3.1.4. Restrictions on the processors or the tasks; 2.3.1.5. Minmax objective; 2.3.2. Approximability; 2.3.3. Approximate solution; 2.3.3.1. Heterogenous processors.
內容註:
2.3.3.2. Homogenous processors2.3.4. Exact solution; 2.3.5. Independent tasks case; 2.4. A little-studied model; 2.4.1. Model; 2.4.2. A heuristic based on graphs; 2.4.2.1. Transformation of the problem; 2.4.2.2. Modeling; 2.4.2.3. Description of the heuristic; 2.5. Conclusion; 2.6. Bibliography; Chapter 3: A Comparison of Some Valid Inequality Generation Methods for General 0-1 Problems; 3.1. Introduction; 3.2. Presentation of the various techniques tested; 3.2.1. Exact separation with respect to a mixed relaxation; 3.2.2. Approximate separation using a heuristic.
內容註:
3.2.3. Restriction + separation + relaxed lifting (RSRL)3.2.4. Disjunctive programming and the lift and project procedure; 3.2.5. Reformulation-linearization technique (RLT); 3.3. Computational results; 3.3.1. Presentation of test problems; 3.3.2. Presentation of the results; 3.3.3. Discussion of the computational results; 3.4. Bibliography; Chapter 4: Production Planning; 4.1. Introduction; 4.2. Hierarchical planning; 4.3. Strategic planning and productive system design; 4.3.1. Group technology; 4.3.2. Locating equipment; 4.4. Tactical planning and inventory management; 4.4.1. A linear programming model for medium-term planning.
標題:
Combinatorial optimization. -
電子資源:
http://onlinelibrary.wiley.com/book/10.1002/9781119005384
ISBN:
9781119005384
Applications of combinatorial optimization
Applications of combinatorial optimization
[electronic resource] /edited by Vangelis Th. Paschos. - 2nd ed. - London ;Wiley,2014. - 1 online resource (449 p.) - ISTE. - ISTE..
Includes bibliographical references and index.
Cover; Title Page; Copyright; Contents; Preface; Chapter 1: Airline Crew Pairing Optimization; 1.1. Introduction; 1.2. Definition of the problem; 1.2.1. Constructing subnetworks; 1.2.2. Pairing costs; 1.2.3. Model; 1.2.4. Case without resource constraints; 1.3. Solution approaches; 1.3.1. Decomposition principles; 1.3.2. Column generation, master problem and subproblem; 1.3.3. Branching methods for finding integer solutions; 1.4. Solving the subproblem for column generation; 1.4.1. Mathematical formulation; 1.4.2. General principle of effective label generation.
Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aim to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts:- On the complexity of combinatorial optimization problems, presenting basics abo.
ISBN: 9781119005384Subjects--Topical Terms:
544215
Combinatorial optimization.
LC Class. No.: QA402.5 / .P384 2014
Dewey Class. No.: 519.64
Applications of combinatorial optimization
LDR
:04683cmm a2200385Mi 4500
001
2002879
003
OCoLC
005
20141125181932.0
006
m o d
007
cr |||||||||||
008
151223s2014 enk ob 001 0 eng d
020
$a
9781119005384
$q
electronic bk.
020
$a
1119005388
$q
electronic bk.
020
$a
9781119015222
$q
electronic bk.
020
$a
1119015227
$q
electronic bk.
020
$z
9781848216587
020
$z
1848216580
035
$a
(OCoLC)887507394
035
$a
ocn887507394
040
$a
EBLCP
$b
eng
$c
EBLCP
$d
DG1
$d
N
$d
OCLCQ
$d
OCLCO
050
4
$a
QA402.5
$b
.P384 2014
082
0 4
$a
519.64
245
0 0
$a
Applications of combinatorial optimization
$h
[electronic resource] /
$c
edited by Vangelis Th. Paschos.
250
$a
2nd ed.
260
$a
London ;
$a
ISTE, Ltd. ;
$a
Hoboken :
$b
Wiley,
$c
2014.
300
$a
1 online resource (449 p.)
490
1
$a
ISTE
504
$a
Includes bibliographical references and index.
505
0
$a
Cover; Title Page; Copyright; Contents; Preface; Chapter 1: Airline Crew Pairing Optimization; 1.1. Introduction; 1.2. Definition of the problem; 1.2.1. Constructing subnetworks; 1.2.2. Pairing costs; 1.2.3. Model; 1.2.4. Case without resource constraints; 1.3. Solution approaches; 1.3.1. Decomposition principles; 1.3.2. Column generation, master problem and subproblem; 1.3.3. Branching methods for finding integer solutions; 1.4. Solving the subproblem for column generation; 1.4.1. Mathematical formulation; 1.4.2. General principle of effective label generation.
505
8
$a
1.4.3. Case of one single resource: the bucket method1.4.4. Case of many resources: reduction of the resource space; 1.4.4.1. Reduction principle; 1.4.4.2. Approach based on the Lagrangian relaxation; 1.4.4.3. Approach based on the surrogate relaxation; 1.5. Conclusion; 1.6. Bibliography; Chapter 2: The Task Allocation Problem; 2.1. Presentation; 2.2. Definitions and modeling; 2.2.1. Definitions; 2.2.2. The processors; 2.2.3. Communications; 2.2.4. Tasks; 2.2.5. Allocation types; 2.2.5.1. Static allocation; 2.2.5.2. Dynamic allocation; 2.2.5.3. With or without pre-emption.
505
8
$a
2.2.5.4. Task duplication2.2.6. Allocation/scheduling; 2.2.7. Modeling; 2.2.7.1. Modeling costs; 2.2.7.2. Constraints; 2.2.7.3. Objectives of the allocation; 2.2.7.3.1. Minimizing the execution duration; 2.2.7.3.2. Minimizing the global execution and communication cost; 2.2.7.3.3. Load balancing; 2.3. Review of the main works; 2.3.1. Polynomial cases; 2.3.1.1. Two-processor cases; 2.3.1.2. Tree case; 2.3.1.3. Other structures; 2.3.1.4. Restrictions on the processors or the tasks; 2.3.1.5. Minmax objective; 2.3.2. Approximability; 2.3.3. Approximate solution; 2.3.3.1. Heterogenous processors.
505
8
$a
2.3.3.2. Homogenous processors2.3.4. Exact solution; 2.3.5. Independent tasks case; 2.4. A little-studied model; 2.4.1. Model; 2.4.2. A heuristic based on graphs; 2.4.2.1. Transformation of the problem; 2.4.2.2. Modeling; 2.4.2.3. Description of the heuristic; 2.5. Conclusion; 2.6. Bibliography; Chapter 3: A Comparison of Some Valid Inequality Generation Methods for General 0-1 Problems; 3.1. Introduction; 3.2. Presentation of the various techniques tested; 3.2.1. Exact separation with respect to a mixed relaxation; 3.2.2. Approximate separation using a heuristic.
505
8
$a
3.2.3. Restriction + separation + relaxed lifting (RSRL)3.2.4. Disjunctive programming and the lift and project procedure; 3.2.5. Reformulation-linearization technique (RLT); 3.3. Computational results; 3.3.1. Presentation of test problems; 3.3.2. Presentation of the results; 3.3.3. Discussion of the computational results; 3.4. Bibliography; Chapter 4: Production Planning; 4.1. Introduction; 4.2. Hierarchical planning; 4.3. Strategic planning and productive system design; 4.3.1. Group technology; 4.3.2. Locating equipment; 4.4. Tactical planning and inventory management; 4.4.1. A linear programming model for medium-term planning.
520
$a
Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aim to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts:- On the complexity of combinatorial optimization problems, presenting basics abo.
588
$a
Description based on print version record.
650
0
$a
Combinatorial optimization.
$3
544215
650
0
$a
Programming (Mathematics)
$3
547124
700
1
$a
Paschos, Vangelis Th.
$3
1314724
830
0
$a
ISTE.
$3
2084372
856
4 0
$u
http://onlinelibrary.wiley.com/book/10.1002/9781119005384
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9270789
電子資源
11.線上閱覽_V
電子書
EB QA402.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入