語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The nonlinear Schrodinger equation =...
~
Fibich, Gadi.
FindBook
Google Book
Amazon
博客來
The nonlinear Schrodinger equation = singular solutions and optical collapse /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The nonlinear Schrodinger equation/ by Gadi Fibich.
其他題名:
singular solutions and optical collapse /
作者:
Fibich, Gadi.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xxxi, 862 p. :ill. (some col.), digital ;24 cm.
內容註:
Derivation of the NLS -- Linear propagation -- Early self-focusing research -- NLS models -- Existence of NLS solutions -- Solitary waves -- Variance identity -- Symmetries and the lens transformation -- Stability of solitary waves -- The explicit critical singular peak-type solution -- The explicit critical singular ring-type solution -- The explicit supercritical singular peak-type solution -- Blowup rate, blowup profile, and power concentration -- The peak-type blowup profile -- Vortex solutions -- NLS on a bounded domain -- Derivation of reduced equations -- Loglog law and adiabatic collapse -- Singular H1 ring-type solutions -- Singular H1 vortex solutions -- Singular H1 peak-type solutions -- Singular standing-ring solutions -- Singular shrinking-ring solutions -- Critical and threshold powers for collapse -- Multiple filamentation -- Nonlinear Geometrical Optics (NGO) method -- Location of singularity -- Computation of solitary waves -- Numerical methods for the NLS -- Effects of spatial discretization -- Modulation theory -- Cubic-quintic and saturated nonlinearities -- Linear and nonlinear damping -- Nonparaxiality and backscattering (nonlinear Helmholtz equation) -- Ultrashort pulses -- Normal and anomalous dispersion -- NGO method for ultrashort pulses with anomalous dispersion -- Continuations beyond the singularity -- Loss of phase and chaotic interactions.
Contained By:
Springer eBooks
標題:
Gross-Pitaevskii equations. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-12748-4
ISBN:
9783319127484 (electronic bk.)
The nonlinear Schrodinger equation = singular solutions and optical collapse /
Fibich, Gadi.
The nonlinear Schrodinger equation
singular solutions and optical collapse /[electronic resource] :by Gadi Fibich. - Cham :Springer International Publishing :2015. - xxxi, 862 p. :ill. (some col.), digital ;24 cm. - Applied mathematical sciences,v.1920066-5452 ;. - Applied mathematical sciences ;v.176..
Derivation of the NLS -- Linear propagation -- Early self-focusing research -- NLS models -- Existence of NLS solutions -- Solitary waves -- Variance identity -- Symmetries and the lens transformation -- Stability of solitary waves -- The explicit critical singular peak-type solution -- The explicit critical singular ring-type solution -- The explicit supercritical singular peak-type solution -- Blowup rate, blowup profile, and power concentration -- The peak-type blowup profile -- Vortex solutions -- NLS on a bounded domain -- Derivation of reduced equations -- Loglog law and adiabatic collapse -- Singular H1 ring-type solutions -- Singular H1 vortex solutions -- Singular H1 peak-type solutions -- Singular standing-ring solutions -- Singular shrinking-ring solutions -- Critical and threshold powers for collapse -- Multiple filamentation -- Nonlinear Geometrical Optics (NGO) method -- Location of singularity -- Computation of solitary waves -- Numerical methods for the NLS -- Effects of spatial discretization -- Modulation theory -- Cubic-quintic and saturated nonlinearities -- Linear and nonlinear damping -- Nonparaxiality and backscattering (nonlinear Helmholtz equation) -- Ultrashort pulses -- Normal and anomalous dispersion -- NGO method for ultrashort pulses with anomalous dispersion -- Continuations beyond the singularity -- Loss of phase and chaotic interactions.
This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrodinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schrodinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fibich is a Professor of Applied Mathematics at Tel Aviv University. "This book provides a clear presentation of the nonlinear Schrodinger equation and its applications from various perspectives (rigorous analysis, informal analysis, and physics) It will be extremely useful for students and researchers who enter this field." Frank Merle, Universite de Cergy-Pontoise and Institut des Hautes Etudes Scientifiques, France
ISBN: 9783319127484 (electronic bk.)
Standard No.: 10.1007/978-3-319-12748-4doiSubjects--Topical Terms:
2139587
Gross-Pitaevskii equations.
LC Class. No.: QC174.26.W28
Dewey Class. No.: 530.124
The nonlinear Schrodinger equation = singular solutions and optical collapse /
LDR
:03876nmm a2200325 a 4500
001
1998072
003
DE-He213
005
20151029091221.0
006
m d
007
cr nn 008maaau
008
151112s2015 gw s 0 eng d
020
$a
9783319127484 (electronic bk.)
020
$a
9783319127477 (paper)
024
7
$a
10.1007/978-3-319-12748-4
$2
doi
035
$a
978-3-319-12748-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.26.W28
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
530.124
$2
23
090
$a
QC174.26.W28
$b
F443 2015
100
1
$a
Fibich, Gadi.
$3
2139586
245
1 4
$a
The nonlinear Schrodinger equation
$h
[electronic resource] :
$b
singular solutions and optical collapse /
$c
by Gadi Fibich.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xxxi, 862 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Applied mathematical sciences,
$x
0066-5452 ;
$v
v.192
505
0
$a
Derivation of the NLS -- Linear propagation -- Early self-focusing research -- NLS models -- Existence of NLS solutions -- Solitary waves -- Variance identity -- Symmetries and the lens transformation -- Stability of solitary waves -- The explicit critical singular peak-type solution -- The explicit critical singular ring-type solution -- The explicit supercritical singular peak-type solution -- Blowup rate, blowup profile, and power concentration -- The peak-type blowup profile -- Vortex solutions -- NLS on a bounded domain -- Derivation of reduced equations -- Loglog law and adiabatic collapse -- Singular H1 ring-type solutions -- Singular H1 vortex solutions -- Singular H1 peak-type solutions -- Singular standing-ring solutions -- Singular shrinking-ring solutions -- Critical and threshold powers for collapse -- Multiple filamentation -- Nonlinear Geometrical Optics (NGO) method -- Location of singularity -- Computation of solitary waves -- Numerical methods for the NLS -- Effects of spatial discretization -- Modulation theory -- Cubic-quintic and saturated nonlinearities -- Linear and nonlinear damping -- Nonparaxiality and backscattering (nonlinear Helmholtz equation) -- Ultrashort pulses -- Normal and anomalous dispersion -- NGO method for ultrashort pulses with anomalous dispersion -- Continuations beyond the singularity -- Loss of phase and chaotic interactions.
520
$a
This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrodinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schrodinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fibich is a Professor of Applied Mathematics at Tel Aviv University. "This book provides a clear presentation of the nonlinear Schrodinger equation and its applications from various perspectives (rigorous analysis, informal analysis, and physics) It will be extremely useful for students and researchers who enter this field." Frank Merle, Universite de Cergy-Pontoise and Institut des Hautes Etudes Scientifiques, France
650
0
$a
Gross-Pitaevskii equations.
$3
2139587
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Partial Differential Equations.
$3
890899
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
1566152
650
2 4
$a
Mathematical Physics.
$3
1542352
650
2 4
$a
Atomic, Molecular, Optical and Plasma Physics.
$3
1074165
650
2 4
$a
Optics and Electrodynamics.
$3
1066865
650
2 4
$a
Nonlinear Dynamics.
$3
608190
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Applied mathematical sciences ;
$v
v.176.
$3
1565663
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-12748-4
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9268783
電子資源
01.外借(書)_YB
電子書
EB QC174.26.W28 F443 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入