語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Language identification using spectr...
~
Rao, K. Sreenivasa.
FindBook
Google Book
Amazon
博客來
Language identification using spectral and prosodic features
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Language identification using spectral and prosodic features/ by K. Sreenivasa Rao, V. Ramu Reddy, Sudhamay Maity.
作者:
Rao, K. Sreenivasa.
其他作者:
Reddy, V. Ramu.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
xi, 98 p. :ill., digital ;24 cm.
內容註:
Introduction -- Literature Review -- Language Identification using Spectral Features -- Language Identification using Prosodic Features -- Summary and Conclusions -- Appendix A: LPCC Features -- Appendix B: MFCC Features -- Appendix C: Gaussian Mixture Model (GMM)
Contained By:
Springer eBooks
標題:
Linguistic analysis (Linguistics) -
標題:
India -
電子資源:
http://dx.doi.org/10.1007/978-3-319-17163-0
ISBN:
9783319171630 (electronic bk.)
Language identification using spectral and prosodic features
Rao, K. Sreenivasa.
Language identification using spectral and prosodic features
[electronic resource] /by K. Sreenivasa Rao, V. Ramu Reddy, Sudhamay Maity. - Cham :Springer International Publishing :2015. - xi, 98 p. :ill., digital ;24 cm. - SpringerBriefs in electrical and computer engineering,2191-8112. - SpringerBriefs in electrical and computer engineering..
Introduction -- Literature Review -- Language Identification using Spectral Features -- Language Identification using Prosodic Features -- Summary and Conclusions -- Appendix A: LPCC Features -- Appendix B: MFCC Features -- Appendix C: Gaussian Mixture Model (GMM)
This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desired models to enhance the performance of LID systems.
ISBN: 9783319171630 (electronic bk.)
Standard No.: 10.1007/978-3-319-17163-0doiSubjects--Topical Terms:
598035
Linguistic analysis (Linguistics)
Subjects--Geographical Terms:
739969
India
LC Class. No.: PF1529
Dewey Class. No.: 491.1
Language identification using spectral and prosodic features
LDR
:02441nmm a2200349 a 4500
001
1997975
003
DE-He213
005
20151027140728.0
006
m d
007
cr nn 008maaau
008
151112s2015 gw s 0 eng d
020
$a
9783319171630 (electronic bk.)
020
$a
9783319171623 (paper)
024
7
$a
10.1007/978-3-319-17163-0
$2
doi
035
$a
978-3-319-17163-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
PF1529
072
7
$a
TTBM
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
COM073000
$2
bisacsh
082
0 4
$a
491.1
$2
23
090
$a
PF1529
$b
.R215 2015
100
1
$a
Rao, K. Sreenivasa.
$3
2058221
245
1 0
$a
Language identification using spectral and prosodic features
$h
[electronic resource] /
$c
by K. Sreenivasa Rao, V. Ramu Reddy, Sudhamay Maity.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xi, 98 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in electrical and computer engineering,
$x
2191-8112
505
0
$a
Introduction -- Literature Review -- Language Identification using Spectral Features -- Language Identification using Prosodic Features -- Summary and Conclusions -- Appendix A: LPCC Features -- Appendix B: MFCC Features -- Appendix C: Gaussian Mixture Model (GMM)
520
$a
This book discusses the impact of spectral features extracted from frame level, glottal closure regions, and pitch-synchronous analysis on the performance of language identification systems. In addition to spectral features, the authors explore prosodic features such as intonation, rhythm, and stress features for discriminating the languages. They present how the proposed spectral and prosodic features capture the language specific information from two complementary aspects, showing how the development of language identification (LID) system using the combination of spectral and prosodic features will enhance the accuracy of identification as well as improve the robustness of the system. This book provides the methods to extract the spectral and prosodic features at various levels, and also suggests the appropriate models for developing robust LID systems according to specific spectral and prosodic features. Finally, the book discuss about various combinations of spectral and prosodic features, and the desired models to enhance the performance of LID systems.
650
0
$a
Linguistic analysis (Linguistics)
$3
598035
650
1 4
$a
Engineering.
$3
586835
650
2 4
$a
Signal, Image and Speech Processing.
$3
891073
650
2 4
$a
Language Translation and Linguistics.
$3
892561
650
2 4
$a
Computational Linguistics.
$3
893900
651
0
$a
India
$
xHistorical geography.
$3
739969
700
1
$a
Reddy, V. Ramu.
$3
2139419
700
1
$a
Maity, Sudhamay.
$3
2139420
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in electrical and computer engineering.
$3
1565565
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-17163-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9268686
電子資源
01.外借(書)_YB
電子書
EB PF1529 .R215 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入