Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Tensor categories and endomorphisms ...
~
Bischoff, Marcel.
Linked to FindBook
Google Book
Amazon
博客來
Tensor categories and endomorphisms of Von Neumann algebras = with applications to quantum field theory /
Record Type:
Electronic resources : Monograph/item
Title/Author:
Tensor categories and endomorphisms of Von Neumann algebras/ by Marcel Bischoff ... [et al.].
Reminder of title:
with applications to quantum field theory /
other author:
Bischoff, Marcel.
Published:
Cham :Springer International Publishing : : 2015.,
Description:
x, 94 p. :ill., digital ;24 cm.
[NT 15003449]:
Introduction -- Homomorphisms of von Neumann algebras -- Endomorphisms of infinite factors -- Homomorphisms and subfactors -- Non-factorial extensions -- Frobenius algebras, Q-systems and modules -- C* Frobenius algebras -- Q-systems and extensions -- The canonical Q-system -- Modules of Q-systems -- Induced Q-systems and Morita equivalence -- Bimodules -- Tensor product of bimodules -- Q-system calculus -- Reduced Q-systems -- Central decomposition of Q-systems -- Irreducible decomposition of Q-systems -- Intermediate Q-systems -- Q-systems in braided tensor categories -- a-induction -- Mirror Q-systems -- Centre of Q-systems -- Braided product of Q-systems -- The full centre -- Modular tensor categories -- The braided product of two full centres -- Applications in QFT -- Basics of algebraic quantum field theory -- Hard boundaries -- Transparent boundaries -- Further directions -- Conclusions.
Contained By:
Springer eBooks
Subject:
Calculus of tensors. -
Online resource:
http://dx.doi.org/10.1007/978-3-319-14301-9
ISBN:
9783319143019 (electronic bk.)
Tensor categories and endomorphisms of Von Neumann algebras = with applications to quantum field theory /
Tensor categories and endomorphisms of Von Neumann algebras
with applications to quantum field theory /[electronic resource] :by Marcel Bischoff ... [et al.]. - Cham :Springer International Publishing :2015. - x, 94 p. :ill., digital ;24 cm. - SpringerBriefs in mathematical physics,v.32197-1757 ;. - SpringerBriefs in mathematical physics ;v.1..
Introduction -- Homomorphisms of von Neumann algebras -- Endomorphisms of infinite factors -- Homomorphisms and subfactors -- Non-factorial extensions -- Frobenius algebras, Q-systems and modules -- C* Frobenius algebras -- Q-systems and extensions -- The canonical Q-system -- Modules of Q-systems -- Induced Q-systems and Morita equivalence -- Bimodules -- Tensor product of bimodules -- Q-system calculus -- Reduced Q-systems -- Central decomposition of Q-systems -- Irreducible decomposition of Q-systems -- Intermediate Q-systems -- Q-systems in braided tensor categories -- a-induction -- Mirror Q-systems -- Centre of Q-systems -- Braided product of Q-systems -- The full centre -- Modular tensor categories -- The braided product of two full centres -- Applications in QFT -- Basics of algebraic quantum field theory -- Hard boundaries -- Transparent boundaries -- Further directions -- Conclusions.
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
ISBN: 9783319143019 (electronic bk.)
Standard No.: 10.1007/978-3-319-14301-9doiSubjects--Topical Terms:
533863
Calculus of tensors.
LC Class. No.: QA433
Dewey Class. No.: 515.63
Tensor categories and endomorphisms of Von Neumann algebras = with applications to quantum field theory /
LDR
:02906nmm a2200325 a 4500
001
1995095
003
DE-He213
005
20150903145740.0
006
m d
007
cr nn 008maaau
008
151019s2015 gw s 0 eng d
020
$a
9783319143019 (electronic bk.)
020
$a
9783319143002 (paper)
024
7
$a
10.1007/978-3-319-14301-9
$2
doi
035
$a
978-3-319-14301-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA433
072
7
$a
PHS
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
082
0 4
$a
515.63
$2
23
090
$a
QA433
$b
.T312 2015
245
0 0
$a
Tensor categories and endomorphisms of Von Neumann algebras
$h
[electronic resource] :
$b
with applications to quantum field theory /
$c
by Marcel Bischoff ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
x, 94 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematical physics,
$x
2197-1757 ;
$v
v.3
505
0
$a
Introduction -- Homomorphisms of von Neumann algebras -- Endomorphisms of infinite factors -- Homomorphisms and subfactors -- Non-factorial extensions -- Frobenius algebras, Q-systems and modules -- C* Frobenius algebras -- Q-systems and extensions -- The canonical Q-system -- Modules of Q-systems -- Induced Q-systems and Morita equivalence -- Bimodules -- Tensor product of bimodules -- Q-system calculus -- Reduced Q-systems -- Central decomposition of Q-systems -- Irreducible decomposition of Q-systems -- Intermediate Q-systems -- Q-systems in braided tensor categories -- a-induction -- Mirror Q-systems -- Centre of Q-systems -- Braided product of Q-systems -- The full centre -- Modular tensor categories -- The braided product of two full centres -- Applications in QFT -- Basics of algebraic quantum field theory -- Hard boundaries -- Transparent boundaries -- Further directions -- Conclusions.
520
$a
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
650
0
$a
Calculus of tensors.
$3
533863
650
0
$a
Von Neumann algebras.
$3
594739
650
0
$a
Quantum field theory.
$3
523766
650
1 4
$a
Physics.
$3
516296
650
2 4
$a
Quantum Field Theories, String Theory.
$3
1067067
650
2 4
$a
Mathematical Physics.
$3
1542352
650
2 4
$a
Algebra.
$3
516203
700
1
$a
Bischoff, Marcel.
$3
2134315
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematical physics ;
$v
v.1.
$3
2072051
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-14301-9
950
$a
Physics and Astronomy (Springer-11651)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9267797
電子資源
11.線上閱覽_V
電子書
EB QA433
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login