語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analysis on h-harmonics and Dunkl tr...
~
Dai, Feng.
FindBook
Google Book
Amazon
博客來
Analysis on h-harmonics and Dunkl transforms
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Analysis on h-harmonics and Dunkl transforms/ by Feng Dai, Yuan Xu ; edited by Sergey Tikhonov.
作者:
Dai, Feng.
其他作者:
Xu, Yuan.
出版者:
Basel :Springer Basel : : 2015.,
面頁冊數:
viii, 118 p. :ill., digital ;24 cm.
內容註:
Preface -- Spherical harmonics and Fourier transform -- Dunkl operators associated with reflection groups -- h-Harmonics and analysis on the sphere -- Littlewood–Paley theory and the multiplier theorem -- Sharp Jackson and sharp Marchaud inequalities -- Dunkl transform -- Multiplier theorems for the Dunkl transform -- Bibliography.
Contained By:
Springer eBooks
標題:
Harmonic analysis. -
電子資源:
http://dx.doi.org/10.1007/978-3-0348-0887-3
ISBN:
9783034808873 (electronic bk.)
Analysis on h-harmonics and Dunkl transforms
Dai, Feng.
Analysis on h-harmonics and Dunkl transforms
[electronic resource] /by Feng Dai, Yuan Xu ; edited by Sergey Tikhonov. - Basel :Springer Basel :2015. - viii, 118 p. :ill., digital ;24 cm. - Advanced courses in mathematics, CRM Barcelona,2297-0304. - Advanced courses in mathematics, CRM Barcelona..
Preface -- Spherical harmonics and Fourier transform -- Dunkl operators associated with reflection groups -- h-Harmonics and analysis on the sphere -- Littlewood–Paley theory and the multiplier theorem -- Sharp Jackson and sharp Marchaud inequalities -- Dunkl transform -- Multiplier theorems for the Dunkl transform -- Bibliography.
As a unique case in this Advanced Courses book series, the authors have jointly written this introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The theory, originally introduced by C. Dunkl, has been expanded on by many authors over the last 20 years. These notes provide an overview of what has been developed so far. The first chapter gives a brief recount of the basics of ordinary spherical harmonics and the Fourier transform. The Dunkl operators, the intertwining operators between partial derivatives and the Dunkl operators are introduced and discussed in the second chapter. The next three chapters are devoted to analysis on the sphere, and the final two chapters to the Dunkl transform. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms. The need for background knowledge on reflection groups is kept to a bare minimum.
ISBN: 9783034808873 (electronic bk.)
Standard No.: 10.1007/978-3-0348-0887-3doiSubjects--Topical Terms:
555704
Harmonic analysis.
LC Class. No.: QA403
Dewey Class. No.: 515.2433
Analysis on h-harmonics and Dunkl transforms
LDR
:02403nmm a2200325 a 4500
001
1995038
003
DE-He213
005
20150903110459.0
006
m d
007
cr nn 008maaau
008
151019s2015 sz s 0 eng d
020
$a
9783034808873 (electronic bk.)
020
$a
9783034808866 (paper)
024
7
$a
10.1007/978-3-0348-0887-3
$2
doi
035
$a
978-3-0348-0887-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA403
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.2433
$2
23
090
$a
QA403
$b
.D132 2015
100
1
$a
Dai, Feng.
$3
2134211
245
1 0
$a
Analysis on h-harmonics and Dunkl transforms
$h
[electronic resource] /
$c
by Feng Dai, Yuan Xu ; edited by Sergey Tikhonov.
260
$a
Basel :
$b
Springer Basel :
$b
Imprint: Birkhauser,
$c
2015.
300
$a
viii, 118 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Advanced courses in mathematics, CRM Barcelona,
$x
2297-0304
505
0
$a
Preface -- Spherical harmonics and Fourier transform -- Dunkl operators associated with reflection groups -- h-Harmonics and analysis on the sphere -- Littlewood–Paley theory and the multiplier theorem -- Sharp Jackson and sharp Marchaud inequalities -- Dunkl transform -- Multiplier theorems for the Dunkl transform -- Bibliography.
520
$a
As a unique case in this Advanced Courses book series, the authors have jointly written this introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The theory, originally introduced by C. Dunkl, has been expanded on by many authors over the last 20 years. These notes provide an overview of what has been developed so far. The first chapter gives a brief recount of the basics of ordinary spherical harmonics and the Fourier transform. The Dunkl operators, the intertwining operators between partial derivatives and the Dunkl operators are introduced and discussed in the second chapter. The next three chapters are devoted to analysis on the sphere, and the final two chapters to the Dunkl transform. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms. The need for background knowledge on reflection groups is kept to a bare minimum.
650
0
$a
Harmonic analysis.
$3
555704
650
0
$a
Fourier analysis.
$3
532730
650
1 4
$a
Mathematics.
$3
515831
650
2 4
$a
Approximations and Expansions.
$3
897324
650
2 4
$a
Abstract Harmonic Analysis.
$3
891093
650
2 4
$a
Integral Transforms, Operational Calculus.
$3
897325
650
2 4
$a
Functional Analysis.
$3
893943
700
1
$a
Xu, Yuan.
$3
1029221
700
1
$a
Tikhonov, Sergey.
$3
2072789
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
Advanced courses in mathematics, CRM Barcelona.
$3
2070343
856
4 0
$u
http://dx.doi.org/10.1007/978-3-0348-0887-3
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9267740
電子資源
11.線上閱覽_V
電子書
EB QA403
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入