語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Protein homology detection through a...
~
Xu, Jinbo.
FindBook
Google Book
Amazon
博客來
Protein homology detection through alignment of Markov random fields = using MRFalign /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Protein homology detection through alignment of Markov random fields/ by Jinbo Xu, Sheng Wang, Jianzhu Ma.
其他題名:
using MRFalign /
作者:
Xu, Jinbo.
其他作者:
Wang, Sheng.
出版者:
Cham :Springer International Publishing : : 2015.,
面頁冊數:
viii, 51 p. :ill. (some col.), digital ;24 cm.
內容註:
Introduction -- Method -- Software -- Experiments and Results -- Conclusion.
Contained By:
Springer eBooks
標題:
Markov random fields. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-14914-1
ISBN:
9783319149141 (electronic bk.)
Protein homology detection through alignment of Markov random fields = using MRFalign /
Xu, Jinbo.
Protein homology detection through alignment of Markov random fields
using MRFalign /[electronic resource] :by Jinbo Xu, Sheng Wang, Jianzhu Ma. - Cham :Springer International Publishing :2015. - viii, 51 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
Introduction -- Method -- Software -- Experiments and Results -- Conclusion.
This work covers sequence-based protein homology detection, a fundamental and challenging bioinformatics problem with a variety of real-world applications. The text first surveys a few popular homology detection methods, such as Position-Specific Scoring Matrix (PSSM) and Hidden Markov Model (HMM) based methods, and then describes a novel Markov Random Fields (MRF) based method developed by the authors. MRF-based methods are much more sensitive than HMM- and PSSM-based methods for remote homolog detection and fold recognition, as MRFs can model long-range residue-residue interaction. The text also describes the installation, usage and result interpretation of programs implementing the MRF-based method.
ISBN: 9783319149141 (electronic bk.)
Standard No.: 10.1007/978-3-319-14914-1doiSubjects--Topical Terms:
728525
Markov random fields.
LC Class. No.: QA274.45
Dewey Class. No.: 519.23
Protein homology detection through alignment of Markov random fields = using MRFalign /
LDR
:01862nmm a2200337 a 4500
001
1994854
003
DE-He213
005
20150825145833.0
006
m d
007
cr nn 008maaau
008
151019s2015 gw s 0 eng d
020
$a
9783319149141 (electronic bk.)
020
$a
9783319149134 (paper)
024
7
$a
10.1007/978-3-319-14914-1
$2
doi
035
$a
978-3-319-14914-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.45
072
7
$a
PSA
$2
bicssc
072
7
$a
UB
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
082
0 4
$a
519.23
$2
23
090
$a
QA274.45
$b
.X8 2015
100
1
$a
Xu, Jinbo.
$3
2133924
245
1 0
$a
Protein homology detection through alignment of Markov random fields
$h
[electronic resource] :
$b
using MRFalign /
$c
by Jinbo Xu, Sheng Wang, Jianzhu Ma.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
viii, 51 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
Introduction -- Method -- Software -- Experiments and Results -- Conclusion.
520
$a
This work covers sequence-based protein homology detection, a fundamental and challenging bioinformatics problem with a variety of real-world applications. The text first surveys a few popular homology detection methods, such as Position-Specific Scoring Matrix (PSSM) and Hidden Markov Model (HMM) based methods, and then describes a novel Markov Random Fields (MRF) based method developed by the authors. MRF-based methods are much more sensitive than HMM- and PSSM-based methods for remote homolog detection and fold recognition, as MRFs can model long-range residue-residue interaction. The text also describes the installation, usage and result interpretation of programs implementing the MRF-based method.
650
0
$a
Markov random fields.
$3
728525
650
0
$a
Sequence alignment (Bioinformatics)
$3
2062400
650
0
$a
Bioinformatics.
$3
553671
650
1 4
$a
Computer Science.
$3
626642
650
2 4
$a
Computational Biology/Bioinformatics.
$3
898313
650
2 4
$a
Probability and Statistics in Computer Science.
$3
891072
650
2 4
$a
Statistics for Life Sciences, Medicine, Health Sciences.
$3
891086
700
1
$a
Wang, Sheng.
$3
1902677
700
1
$a
Ma, Jianzhu.
$3
2133925
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-14914-1
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9267557
電子資源
11.線上閱覽_V
電子書
EB QA274.45
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入