語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Interpreting sensor information in l...
~
Javed, Nauman.
FindBook
Google Book
Amazon
博客來
Interpreting sensor information in large-scale distributed cyber-physical systems.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Interpreting sensor information in large-scale distributed cyber-physical systems./
作者:
Javed, Nauman.
面頁冊數:
108 p.
附註:
Source: Dissertation Abstracts International, Volume: 75-07(E), Section: B.
Contained By:
Dissertation Abstracts International75-07B(E).
標題:
Engineering, Computer. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3615420
ISBN:
9781303814204
Interpreting sensor information in large-scale distributed cyber-physical systems.
Javed, Nauman.
Interpreting sensor information in large-scale distributed cyber-physical systems.
- 108 p.
Source: Dissertation Abstracts International, Volume: 75-07(E), Section: B.
Thesis (Ph.D.)--University of Massachusetts Amherst, 2014.
Devices that sense some aspect of the environment, or collect data about it, process the sensed data to produce useful information, and possibly take actions based on this in- formation to effect desired changes in the environment are becoming ubiquitous. There are numerous examples of such "Cyber-Physical Systems," such as, weather sensors dis- tributed geographically to sense various weather parameters like temperature, air pressure, humidity etc, sensors used at different levels of the energy grid, from power generation to distribution to consumption, that monitor energy production and usage patterns, sen- sors used in various military and civilian surveillance and tracking applications etc. This dissertation focuses on "Distributed Cyber-Physical Systems," the ones that have multiple sensors distributed geographically or spatially. The sensors comprising such Distributed Cyber-Physical Systems may or may not be networked together, although their main pur- pose is to provide localized information to be ultimately fused into an overall picture of the whole geographical space covered by the sensors. This dissertation explores ways of interpreting information in such Distributed Cyber-Physical Systems. In this context, we look at three related problems. The first one is a multiple target localization and tracking problem in a wireless sensor network comprising binary proximity sensors [38]. We analyze this problem using the geometry of sensing of the individual sensors, and apply graph theoretical concepts to develop a fully-distributed multiple, interfering, target localization and tracking algorithm. Our distributed algorithm demonstrates the power of the use of localized information by sensors to make decisions that contribute to the inference about phenomena, in this case target movement, that are essentially global in nature. The distributed implementation of information interpretation also lends efficiency advantages, such as more efficient energy consumption due to reduced communication requirements, as shown in our simulations. The second problem, in sensor information interpretation, that this dissertation looks at is concerned with sensor verification in a system of distributed sensors, all of which are sensing some global phenomena of interest [37]. As a demonstrative application, we use a dataset collected from weather sensors distributed in the U.S. Northeast, each sensor sensing the weather parameters Temperature, Air Pressure, Dew Point, and Visibility, over a time period ranging from late May 2011 to mid-June 2011. Our approach is to first create a statistical model of the weather parameters and then identify outliers in the observed data. These outliers ultimately help verify if the sensors' reports are erroneous. While the first two problems in this dissertation, as described above, deal with sensor information in one domain, target tracking in one case and weather sensing in the other, the third problem we investigate is cross-domain [36]. Here, parameters of one domain affect parameters of another domain, but only the affected domain parameters are measured, and tracked, to ultimately control these parameters in the affected domain. Specifically, we develop methods of network configuration based on distributed estimation and prediction of network performance degradataion parameters, where this performance degradation is originally affected by external environmental parameters such as weather conditions. We take "Routing in Wirelss Mesh Networks in the Face of Adverse Weather Conditions" as an example application to demonstrate our ideas of predictive network configuration. Through the simulations generated using real-world weather data, we are able to show that localized estimation and prediction of wireless link quality, as affected by the extreme weather events, results in remarkable improvements in network routing performance, and performs equally well, or even better, than routing that uses predictions of the affecting weather itself.
ISBN: 9781303814204Subjects--Topical Terms:
1669061
Engineering, Computer.
Interpreting sensor information in large-scale distributed cyber-physical systems.
LDR
:04995nam a2200289 4500
001
1967347
005
20141111083116.5
008
150210s2014 ||||||||||||||||| ||eng d
020
$a
9781303814204
035
$a
(MiAaPQ)AAI3615420
035
$a
AAI3615420
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Javed, Nauman.
$3
2104326
245
1 0
$a
Interpreting sensor information in large-scale distributed cyber-physical systems.
300
$a
108 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-07(E), Section: B.
500
$a
Advisers: Tilman Wolf; Michael Zink.
502
$a
Thesis (Ph.D.)--University of Massachusetts Amherst, 2014.
520
$a
Devices that sense some aspect of the environment, or collect data about it, process the sensed data to produce useful information, and possibly take actions based on this in- formation to effect desired changes in the environment are becoming ubiquitous. There are numerous examples of such "Cyber-Physical Systems," such as, weather sensors dis- tributed geographically to sense various weather parameters like temperature, air pressure, humidity etc, sensors used at different levels of the energy grid, from power generation to distribution to consumption, that monitor energy production and usage patterns, sen- sors used in various military and civilian surveillance and tracking applications etc. This dissertation focuses on "Distributed Cyber-Physical Systems," the ones that have multiple sensors distributed geographically or spatially. The sensors comprising such Distributed Cyber-Physical Systems may or may not be networked together, although their main pur- pose is to provide localized information to be ultimately fused into an overall picture of the whole geographical space covered by the sensors. This dissertation explores ways of interpreting information in such Distributed Cyber-Physical Systems. In this context, we look at three related problems. The first one is a multiple target localization and tracking problem in a wireless sensor network comprising binary proximity sensors [38]. We analyze this problem using the geometry of sensing of the individual sensors, and apply graph theoretical concepts to develop a fully-distributed multiple, interfering, target localization and tracking algorithm. Our distributed algorithm demonstrates the power of the use of localized information by sensors to make decisions that contribute to the inference about phenomena, in this case target movement, that are essentially global in nature. The distributed implementation of information interpretation also lends efficiency advantages, such as more efficient energy consumption due to reduced communication requirements, as shown in our simulations. The second problem, in sensor information interpretation, that this dissertation looks at is concerned with sensor verification in a system of distributed sensors, all of which are sensing some global phenomena of interest [37]. As a demonstrative application, we use a dataset collected from weather sensors distributed in the U.S. Northeast, each sensor sensing the weather parameters Temperature, Air Pressure, Dew Point, and Visibility, over a time period ranging from late May 2011 to mid-June 2011. Our approach is to first create a statistical model of the weather parameters and then identify outliers in the observed data. These outliers ultimately help verify if the sensors' reports are erroneous. While the first two problems in this dissertation, as described above, deal with sensor information in one domain, target tracking in one case and weather sensing in the other, the third problem we investigate is cross-domain [36]. Here, parameters of one domain affect parameters of another domain, but only the affected domain parameters are measured, and tracked, to ultimately control these parameters in the affected domain. Specifically, we develop methods of network configuration based on distributed estimation and prediction of network performance degradataion parameters, where this performance degradation is originally affected by external environmental parameters such as weather conditions. We take "Routing in Wirelss Mesh Networks in the Face of Adverse Weather Conditions" as an example application to demonstrate our ideas of predictive network configuration. Through the simulations generated using real-world weather data, we are able to show that localized estimation and prediction of wireless link quality, as affected by the extreme weather events, results in remarkable improvements in network routing performance, and performs equally well, or even better, than routing that uses predictions of the affecting weather itself.
590
$a
School code: 0118.
650
4
$a
Engineering, Computer.
$3
1669061
650
4
$a
Computer Science.
$3
626642
650
4
$a
Statistics.
$3
517247
690
$a
0464
690
$a
0984
690
$a
0463
710
2
$a
University of Massachusetts Amherst.
$b
Electrical & Computer Engineering.
$3
1030486
773
0
$t
Dissertation Abstracts International
$g
75-07B(E).
790
$a
0118
791
$a
Ph.D.
792
$a
2014
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3615420
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9262353
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入