語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Utilizing big data in identification...
~
Agarwal, Shivam.
FindBook
Google Book
Amazon
博客來
Utilizing big data in identification and correction of OCR errors.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Utilizing big data in identification and correction of OCR errors./
作者:
Agarwal, Shivam.
面頁冊數:
63 p.
附註:
Source: Masters Abstracts International, Volume: 52-03.
Contained By:
Masters Abstracts International52-03(E).
標題:
Computer Science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1548152
ISBN:
9781303530371
Utilizing big data in identification and correction of OCR errors.
Agarwal, Shivam.
Utilizing big data in identification and correction of OCR errors.
- 63 p.
Source: Masters Abstracts International, Volume: 52-03.
Thesis (M.S.C.S.)--University of Nevada, Las Vegas, 2013.
In this thesis, we report on our experiments for detection and correction of OCR errors with web data. More specifically, we utilize Google search to access the big data resources available to identify possible candidates for correction. We then use a combination of the Longest Common Subsequences (LCS) and Bayesian estimates to automatically pick the proper candidate.
ISBN: 9781303530371Subjects--Topical Terms:
626642
Computer Science.
Utilizing big data in identification and correction of OCR errors.
LDR
:01616nam a2200301 4500
001
1966786
005
20141112075109.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303530371
035
$a
(MiAaPQ)AAI1548152
035
$a
AAI1548152
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Agarwal, Shivam.
$3
2103656
245
1 0
$a
Utilizing big data in identification and correction of OCR errors.
300
$a
63 p.
500
$a
Source: Masters Abstracts International, Volume: 52-03.
500
$a
Adviser: Kazem Taghva.
502
$a
Thesis (M.S.C.S.)--University of Nevada, Las Vegas, 2013.
520
$a
In this thesis, we report on our experiments for detection and correction of OCR errors with web data. More specifically, we utilize Google search to access the big data resources available to identify possible candidates for correction. We then use a combination of the Longest Common Subsequences (LCS) and Bayesian estimates to automatically pick the proper candidate.
520
$a
Our experimental results on a small set of historical newspaper data show a recall and precision of 51% and 100%, respectively. The work in this thesis further provides a detailed classification and analysis of all errors. In particular, we point out the shortcomings of our approach in its ability to suggest proper candidates to correct the remaining errors.
590
$a
School code: 0506.
650
4
$a
Computer Science.
$3
626642
650
4
$a
Information Technology.
$3
1030799
650
4
$a
Web Studies.
$3
1026830
690
$a
0984
690
$a
0489
690
$a
0646
710
2
$a
University of Nevada, Las Vegas.
$b
Computer Science.
$3
1680278
773
0
$t
Masters Abstracts International
$g
52-03(E).
790
$a
0506
791
$a
M.S.C.S.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1548152
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9261792
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入