語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
L1 methods for shrinkage and correla...
~
Shen, Jie.
FindBook
Google Book
Amazon
博客來
L1 methods for shrinkage and correlation.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
L1 methods for shrinkage and correlation./
作者:
Shen, Jie.
面頁冊數:
85 p.
附註:
Source: Dissertation Abstracts International, Volume: 75-05(E), Section: B.
Contained By:
Dissertation Abstracts International75-05B(E).
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3609802
ISBN:
9781303691850
L1 methods for shrinkage and correlation.
Shen, Jie.
L1 methods for shrinkage and correlation.
- 85 p.
Source: Dissertation Abstracts International, Volume: 75-05(E), Section: B.
Thesis (Ph.D.)--Clemson University, 2013.
This dissertation explored the idea of L1 norm in solving two statistical problems including multiple linear regression and diagnostic checking in time series. In recent years L1 shrinkage methods have become popular in linear regression as they can achieve simultaneous variable selection and parameter estimation. Their objective functions containing a least squares term and an L1 penalty term which can produce sparse solutions (Fan and Li, 2001). Least absolute shrinkage and selection operator (Lasso) was the first L1 penalized method proposed and has been widely used in practice. But the Lasso estimator has noticeable bias and is inconsistent for variable selection. Zou (2006) proposed adaptive Lasso and proved its oracle properties under some regularity conditions. We investigate the performance of adaptive Lasso by applying it to the problem of multiple undocumented change-point detection in climate. Artificial factors such as relocation of weather stations, recalibration of measurement instruments and city growth can cause abrupt mean shifts in historical temperature data. These changes do not reflect the true atmospheric evolution and unfortunately are often undocumented due to various reasons. It is imperative to locate the occurrence of these abrupt mean shifts so that raw data can be adjusted to only display the true atmosphere evolution. We have built a special linear model which accounts for long-term temperature change (global warming) by linear trend and is featured by p = n (the number of variables equals the number of observations). We apply adaptive Lasso to estimate the underlying sparse model and allow the trend parameter to be unpenalized in the objective function. Bayesian Information Criterion (BIC) and the CM criterion (Caussinus and Mestre, 2004) are used to select the finalized model. Multivariate t simultaneous confidence intervals can post-select the change-points detected by adaptive Lasso to attenuate overestimation. Considering that the oracle properties of adaptive Lasso are obtained under the condition of linear independence between predictor variables, adaptive Lasso should be used with caution since it is not uncommon for real data sets to have multicollinearity. Zou and Hastie (2005) proposed elastic net whose objective function involves both L1 and L2 penalties and claimed its superiority over Lasso in prediction. This procedure can identify a sparse model due to the L1 penalty and can tackle multicollinearity due to the L2 penalty. Although Lasso and elastic net are favored over ordinary least squares and ridge regression because of their functionality of variable selection, in presence of multicollinearity ridge regression can outperform both Lasso and elastic net in prediction. The salient point is that no regression method dominates in all cases (Fan and Li, 2001, Zou, 2006, Zou and Hastie, 2005). One major flaw of both Lasso and elastic net is the unnecessary bias brought by constraining all parameters to be penalized by the same norm. In this dissertation we propose a general and flexible framework for variable selection and estimation in linear regression. Our objective function automatically allows each parameter to be unpenalized, penalized by L1, L2 or both norms based on parameter significance and variable correlation. The resulting estimator not only can identify the correct set of significant variables with a large probability but also has smaller bias for nonzero parameters. Our procedure is a combinatorial optimization problem which can be solved by exhaustive search or genetic algorithm (as a surrogate to computation time). Aimed at a descriptive model, BIC is chosen as the model selection criterion. Another application of the L1 norm considered in this dissertation is portmanteau tests in time series. The first step in time series regression is to determine if significant serial correlation is present. If initial investigations indicate significant serial correlation, the second step is to fit an autoregressive moving average (ARMA) process to parameterize the correlation function. Portmanteau tests are commonly used to detect serial correlation or assess the goodness-of-fit of the ARMA model in these two steps. For small samples the commonly employed Ljung-Box portmanteau test (Ljung and Box, 1978) can have low power. It is beneficial to have a more powerful small sample test for detecting significant correlation. We develop such a test by considering the Cauchy estimator of correlation. While the usual sample correlation is estimated through L2 norm, the Cauchy estimator is based on L1 norm. Asymptotic properties of the test statistic are obtained. The test compares very favorably with the Box-Pierce/Ljung-Box statistics in detecting autoregressive alternatives.
ISBN: 9781303691850Subjects--Topical Terms:
517247
Statistics.
L1 methods for shrinkage and correlation.
LDR
:05618nam a2200265 4500
001
1964584
005
20141010092522.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303691850
035
$a
(MiAaPQ)AAI3609802
035
$a
AAI3609802
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Shen, Jie.
$3
1929047
245
1 0
$a
L1 methods for shrinkage and correlation.
300
$a
85 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-05(E), Section: B.
500
$a
Adviser: Colin Gallagher.
502
$a
Thesis (Ph.D.)--Clemson University, 2013.
520
$a
This dissertation explored the idea of L1 norm in solving two statistical problems including multiple linear regression and diagnostic checking in time series. In recent years L1 shrinkage methods have become popular in linear regression as they can achieve simultaneous variable selection and parameter estimation. Their objective functions containing a least squares term and an L1 penalty term which can produce sparse solutions (Fan and Li, 2001). Least absolute shrinkage and selection operator (Lasso) was the first L1 penalized method proposed and has been widely used in practice. But the Lasso estimator has noticeable bias and is inconsistent for variable selection. Zou (2006) proposed adaptive Lasso and proved its oracle properties under some regularity conditions. We investigate the performance of adaptive Lasso by applying it to the problem of multiple undocumented change-point detection in climate. Artificial factors such as relocation of weather stations, recalibration of measurement instruments and city growth can cause abrupt mean shifts in historical temperature data. These changes do not reflect the true atmospheric evolution and unfortunately are often undocumented due to various reasons. It is imperative to locate the occurrence of these abrupt mean shifts so that raw data can be adjusted to only display the true atmosphere evolution. We have built a special linear model which accounts for long-term temperature change (global warming) by linear trend and is featured by p = n (the number of variables equals the number of observations). We apply adaptive Lasso to estimate the underlying sparse model and allow the trend parameter to be unpenalized in the objective function. Bayesian Information Criterion (BIC) and the CM criterion (Caussinus and Mestre, 2004) are used to select the finalized model. Multivariate t simultaneous confidence intervals can post-select the change-points detected by adaptive Lasso to attenuate overestimation. Considering that the oracle properties of adaptive Lasso are obtained under the condition of linear independence between predictor variables, adaptive Lasso should be used with caution since it is not uncommon for real data sets to have multicollinearity. Zou and Hastie (2005) proposed elastic net whose objective function involves both L1 and L2 penalties and claimed its superiority over Lasso in prediction. This procedure can identify a sparse model due to the L1 penalty and can tackle multicollinearity due to the L2 penalty. Although Lasso and elastic net are favored over ordinary least squares and ridge regression because of their functionality of variable selection, in presence of multicollinearity ridge regression can outperform both Lasso and elastic net in prediction. The salient point is that no regression method dominates in all cases (Fan and Li, 2001, Zou, 2006, Zou and Hastie, 2005). One major flaw of both Lasso and elastic net is the unnecessary bias brought by constraining all parameters to be penalized by the same norm. In this dissertation we propose a general and flexible framework for variable selection and estimation in linear regression. Our objective function automatically allows each parameter to be unpenalized, penalized by L1, L2 or both norms based on parameter significance and variable correlation. The resulting estimator not only can identify the correct set of significant variables with a large probability but also has smaller bias for nonzero parameters. Our procedure is a combinatorial optimization problem which can be solved by exhaustive search or genetic algorithm (as a surrogate to computation time). Aimed at a descriptive model, BIC is chosen as the model selection criterion. Another application of the L1 norm considered in this dissertation is portmanteau tests in time series. The first step in time series regression is to determine if significant serial correlation is present. If initial investigations indicate significant serial correlation, the second step is to fit an autoregressive moving average (ARMA) process to parameterize the correlation function. Portmanteau tests are commonly used to detect serial correlation or assess the goodness-of-fit of the ARMA model in these two steps. For small samples the commonly employed Ljung-Box portmanteau test (Ljung and Box, 1978) can have low power. It is beneficial to have a more powerful small sample test for detecting significant correlation. We develop such a test by considering the Cauchy estimator of correlation. While the usual sample correlation is estimated through L2 norm, the Cauchy estimator is based on L1 norm. Asymptotic properties of the test statistic are obtained. The test compares very favorably with the Box-Pierce/Ljung-Box statistics in detecting autoregressive alternatives.
590
$a
School code: 0050.
650
4
$a
Statistics.
$3
517247
690
$a
0463
710
2
$a
Clemson University.
$b
Mathematical Science.
$3
1023032
773
0
$t
Dissertation Abstracts International
$g
75-05B(E).
790
$a
0050
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3609802
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9259583
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入