語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Studies of passive and active plasmo...
~
Campbell, Sawyer Duane.
FindBook
Google Book
Amazon
博客來
Studies of passive and active plasmonic core-shell nanoparticles and their applications.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Studies of passive and active plasmonic core-shell nanoparticles and their applications./
作者:
Campbell, Sawyer Duane.
面頁冊數:
190 p.
附註:
Source: Dissertation Abstracts International, Volume: 74-08(E), Section: B.
Contained By:
Dissertation Abstracts International74-08B(E).
標題:
Physics, Optics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3559309
ISBN:
9781303043239
Studies of passive and active plasmonic core-shell nanoparticles and their applications.
Campbell, Sawyer Duane.
Studies of passive and active plasmonic core-shell nanoparticles and their applications.
- 190 p.
Source: Dissertation Abstracts International, Volume: 74-08(E), Section: B.
Thesis (Ph.D.)--The University of Arizona, 2013.
Coated nanoparticles (CNP) are core-shell particles consisting of differing layers of epsilon positive (EP) and epsilon negative (ENG) materials. The juxtaposition of these EP and ENG materials can lead to the possibility of coupling incident plane waves to surface plasmon resonances (SPR) for particles even highly subwavelength in size. We introduce standard models of the permittivities of the noble metals used in these CNPs, and propose corrections to them based on experimental data when their sizes are extremely small. Mie theory is the solution to plane wave scattering by spheres and we extend the solution here to spheres consisting of an arbitrary number of layers. We discuss the resonance behaviors of passive CNPs with an emphasis on how the Coated nanoparticles (CNP) are core-shell particles consisting of differing layers of epsilon positive (EP) and epsilon negative (ENG) materials. The juxtaposition of these EP and ENG materials can lead to the possibility of coupling incident plane waves to surface plasmon resonances (SPR) for particles even highly subwavelength in size. We introduce standard models of the permittivities of the noble metals used in these CNPs, and propose corrections to them based on experimental data when their sizes are extremely small. Mie theory is the solution to plane wave scattering by spheres and we extend the solution here to spheres consisting of an arbitrary number of layers. We discuss the resonance behaviors of passive CNPs with an emphasis on how the resonance wavelength can be tuned by controlling the material properties and radii of the various layers in the configuration. It is demonstrated that these passive CNPs have scattering cross sections much larger than their geometrical size, but their resonance strengths are attenuated because of the inherent losses in the metals.To overcome this limitation, we show how the introduction of active material into the CNPs can not only overcome these losses, but can actually lead to an amplification of the scattering of the incident field. We report several optimized active CNP designs, including ones based on quantum dot gain media and study their performance characteristics with particular attention to the effect of the location of the gain material on the performance of these designs. We investigate the ability to control the scattered field directivity of the CNPs in both their far- and near-field regions and propose designs with minimal backscattering and those emulating macroscopic nanojets. We compare data generated by initial efforts to experimentally prepare CNPs and compare against analytical and numerical simulation results. Finally, we suggest a variety of interesting future research directions. resonance wavelength can be tuned by controlling the material properties and radii of the various layers in the configuration. It is demonstrated that these passive CNPs have scattering cross sections much larger than their geometrical size, but their resonance strengths are attenuated because of the inherent losses in the metals. To overcome this limitation, we show how the introduction of active material into the CNPs can not only overcome these losses, but can actually lead to an amplification of the scattering of the incident field. We report several optimized active CNP designs, including ones based on quantum dot gain media and study their performance characteristics with particular attention to the effect of the location of the gain material on the performance of these designs. We investigate the ability to control the scattered field directivity of the CNPs in both their far- and near-field regions and propose designs with minimal backscattering and those emulating macroscopic nanojets. We compare data generated by initial efforts to experimentally prepare CNPs and compare against analytical and numerical simulation results. Finally, we suggest a variety of interesting future research directions.
ISBN: 9781303043239Subjects--Topical Terms:
1018756
Physics, Optics.
Studies of passive and active plasmonic core-shell nanoparticles and their applications.
LDR
:04876nam a2200289 4500
001
1964234
005
20141015113817.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303043239
035
$a
(MiAaPQ)AAI3559309
035
$a
AAI3559309
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Campbell, Sawyer Duane.
$3
2100647
245
1 0
$a
Studies of passive and active plasmonic core-shell nanoparticles and their applications.
300
$a
190 p.
500
$a
Source: Dissertation Abstracts International, Volume: 74-08(E), Section: B.
500
$a
Adviser: Richard W. Ziolkowski.
502
$a
Thesis (Ph.D.)--The University of Arizona, 2013.
520
$a
Coated nanoparticles (CNP) are core-shell particles consisting of differing layers of epsilon positive (EP) and epsilon negative (ENG) materials. The juxtaposition of these EP and ENG materials can lead to the possibility of coupling incident plane waves to surface plasmon resonances (SPR) for particles even highly subwavelength in size. We introduce standard models of the permittivities of the noble metals used in these CNPs, and propose corrections to them based on experimental data when their sizes are extremely small. Mie theory is the solution to plane wave scattering by spheres and we extend the solution here to spheres consisting of an arbitrary number of layers. We discuss the resonance behaviors of passive CNPs with an emphasis on how the Coated nanoparticles (CNP) are core-shell particles consisting of differing layers of epsilon positive (EP) and epsilon negative (ENG) materials. The juxtaposition of these EP and ENG materials can lead to the possibility of coupling incident plane waves to surface plasmon resonances (SPR) for particles even highly subwavelength in size. We introduce standard models of the permittivities of the noble metals used in these CNPs, and propose corrections to them based on experimental data when their sizes are extremely small. Mie theory is the solution to plane wave scattering by spheres and we extend the solution here to spheres consisting of an arbitrary number of layers. We discuss the resonance behaviors of passive CNPs with an emphasis on how the resonance wavelength can be tuned by controlling the material properties and radii of the various layers in the configuration. It is demonstrated that these passive CNPs have scattering cross sections much larger than their geometrical size, but their resonance strengths are attenuated because of the inherent losses in the metals.To overcome this limitation, we show how the introduction of active material into the CNPs can not only overcome these losses, but can actually lead to an amplification of the scattering of the incident field. We report several optimized active CNP designs, including ones based on quantum dot gain media and study their performance characteristics with particular attention to the effect of the location of the gain material on the performance of these designs. We investigate the ability to control the scattered field directivity of the CNPs in both their far- and near-field regions and propose designs with minimal backscattering and those emulating macroscopic nanojets. We compare data generated by initial efforts to experimentally prepare CNPs and compare against analytical and numerical simulation results. Finally, we suggest a variety of interesting future research directions. resonance wavelength can be tuned by controlling the material properties and radii of the various layers in the configuration. It is demonstrated that these passive CNPs have scattering cross sections much larger than their geometrical size, but their resonance strengths are attenuated because of the inherent losses in the metals. To overcome this limitation, we show how the introduction of active material into the CNPs can not only overcome these losses, but can actually lead to an amplification of the scattering of the incident field. We report several optimized active CNP designs, including ones based on quantum dot gain media and study their performance characteristics with particular attention to the effect of the location of the gain material on the performance of these designs. We investigate the ability to control the scattered field directivity of the CNPs in both their far- and near-field regions and propose designs with minimal backscattering and those emulating macroscopic nanojets. We compare data generated by initial efforts to experimentally prepare CNPs and compare against analytical and numerical simulation results. Finally, we suggest a variety of interesting future research directions.
590
$a
School code: 0009.
650
4
$a
Physics, Optics.
$3
1018756
650
4
$a
Physics, Electricity and Magnetism.
$3
1019535
650
4
$a
Physics, General.
$3
1018488
690
$a
0752
690
$a
0607
690
$a
0605
710
2
$a
The University of Arizona.
$b
Optical Sciences.
$3
1019548
773
0
$t
Dissertation Abstracts International
$g
74-08B(E).
790
$a
0009
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3559309
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9259233
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入