語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Information Retrieval over Uncertain...
~
Xu, Jie.
FindBook
Google Book
Amazon
博客來
Information Retrieval over Uncertain Data.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Information Retrieval over Uncertain Data./
作者:
Xu, Jie.
面頁冊數:
176 p.
附註:
Source: Dissertation Abstracts International, Volume: 75-10(E), Section: B.
Contained By:
Dissertation Abstracts International75-10B(E).
標題:
Computer Science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3627302
ISBN:
9781321024593
Information Retrieval over Uncertain Data.
Xu, Jie.
Information Retrieval over Uncertain Data.
- 176 p.
Source: Dissertation Abstracts International, Volume: 75-10(E), Section: B.
Thesis (Ph.D.)--University of California, Irvine, 2014.
Increasingly, end-user data published on web or stored in databases is generated using variety of automated data processing techniques, such as automatic image tagging, speech recognition, entity resolution, etc. Such techniques often employ probabilistic models and generate uncertain data with probabilistic attributes. Typical information retrieval tasks consists of retrieving specific information or extracting an information overview from data. Uncertainty existing in the data complicates such information retrieval tasks.
ISBN: 9781321024593Subjects--Topical Terms:
626642
Computer Science.
Information Retrieval over Uncertain Data.
LDR
:03051nam a2200313 4500
001
1963105
005
20140924121927.5
008
150210s2014 ||||||||||||||||| ||eng d
020
$a
9781321024593
035
$a
(MiAaPQ)AAI3627302
035
$a
AAI3627302
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Xu, Jie.
$3
1933650
245
1 0
$a
Information Retrieval over Uncertain Data.
300
$a
176 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-10(E), Section: B.
500
$a
Advisers: Sharad Mehrotra; Dmitri V. Kalashnikov.
502
$a
Thesis (Ph.D.)--University of California, Irvine, 2014.
520
$a
Increasingly, end-user data published on web or stored in databases is generated using variety of automated data processing techniques, such as automatic image tagging, speech recognition, entity resolution, etc. Such techniques often employ probabilistic models and generate uncertain data with probabilistic attributes. Typical information retrieval tasks consists of retrieving specific information or extracting an information overview from data. Uncertainty existing in the data complicates such information retrieval tasks.
520
$a
In this thesis, we explore various aspects of the problem of information retrieval on top of uncertain data. One such aspect is to reduce the uncertainty of data itself such that the quality of the end application on top of the data can be improved. We explore how knowledge of external domain semantics can be utilized to improve the data quality. We apply our technique to the problem of speech annotation of images and use that as an example to show the advantage of such a semantics-based approach.
520
$a
While uncertainty reduction techniques we design can bring additional determinism to the data, usually it is infeasible to completely eliminate the uncertainty without information loss. As a result, users or end applications of information retrieval have to deal with certain level of uncertainty. Requiring user/end application to handle such uncertainty complicates application design and may not be feasible in certain scenario. For instance, uncertain data has to be stored in legacy systems (such as Flickr) which do not understand probabilistic input. The second aspect is the problem of the determinization of uncertain data where the goal is to the select best deterministic representation of uncertain data based on application criteria.
520
$a
Finally, another aspect of the studied problem is that of extracting information overview in the form of summary from uncertain data. Summarization is often used in the context of information retrieval to overcome the problem of information overload. The thesis explores how the uncertainty and heterogeneity can be overcome in generating summaries.
590
$a
School code: 0030.
650
4
$a
Computer Science.
$3
626642
650
4
$a
Information Science.
$3
1017528
690
$a
0984
690
$a
0723
710
2
$a
University of California, Irvine.
$b
Computer Science - Ph.D..
$3
2099281
773
0
$t
Dissertation Abstracts International
$g
75-10B(E).
790
$a
0030
791
$a
Ph.D.
792
$a
2014
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3627302
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9258103
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入