語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Computational methods in permutation...
~
Nakamura, Brian Koichi.
FindBook
Google Book
Amazon
博客來
Computational methods in permutation patterns.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Computational methods in permutation patterns./
作者:
Nakamura, Brian Koichi.
面頁冊數:
102 p.
附註:
Source: Dissertation Abstracts International, Volume: 75-01(E), Section: B.
Contained By:
Dissertation Abstracts International75-01B(E).
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3597874
ISBN:
9781303462320
Computational methods in permutation patterns.
Nakamura, Brian Koichi.
Computational methods in permutation patterns.
- 102 p.
Source: Dissertation Abstracts International, Volume: 75-01(E), Section: B.
Thesis (Ph.D.)--Rutgers The State University of New Jersey - New Brunswick, 2013.
Given two permutations sigma (of length k) and pi (of length n), the permutation pi is said to contain the pattern sigma if there exists a length k subsequence in pi that is order-isomorphic to sigma. Each such subsequence is called an occurrence of sigma in pi. Over the past few decades, the study of pattern-avoiding permutations has been a very active area of research.
ISBN: 9781303462320Subjects--Topical Terms:
515831
Mathematics.
Computational methods in permutation patterns.
LDR
:01671nam a2200289 4500
001
1961006
005
20140701144901.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303462320
035
$a
(MiAaPQ)AAI3597874
035
$a
AAI3597874
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Nakamura, Brian Koichi.
$3
2096811
245
1 0
$a
Computational methods in permutation patterns.
300
$a
102 p.
500
$a
Source: Dissertation Abstracts International, Volume: 75-01(E), Section: B.
500
$a
Adviser: Doron Zeilberger.
502
$a
Thesis (Ph.D.)--Rutgers The State University of New Jersey - New Brunswick, 2013.
520
$a
Given two permutations sigma (of length k) and pi (of length n), the permutation pi is said to contain the pattern sigma if there exists a length k subsequence in pi that is order-isomorphic to sigma. Each such subsequence is called an occurrence of sigma in pi. Over the past few decades, the study of pattern-avoiding permutations has been a very active area of research.
520
$a
This thesis will consider two types of problems in this area. The first is a variation known as consecutive patterns, where the pattern sigma must occur in consecutive terms of the permutation to count as an occurrence. The second is a generalization of the classical pattern avoiding problem, where we wish to study permutations with exactly r occurrences of a pattern (for some fixed non-negative r).
590
$a
School code: 0190.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Applied Mathematics.
$3
1669109
690
$a
0405
690
$a
0364
710
2
$a
Rutgers The State University of New Jersey - New Brunswick.
$b
Mathematics.
$3
2096812
773
0
$t
Dissertation Abstracts International
$g
75-01B(E).
790
$a
0190
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3597874
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9255834
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入