語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Maximum principle preserving high or...
~
Jiang, Yi.
FindBook
Google Book
Amazon
博客來
Maximum principle preserving high order schemes for convection-dominated diffusion equations.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Maximum principle preserving high order schemes for convection-dominated diffusion equations./
作者:
Jiang, Yi.
面頁冊數:
96 p.
附註:
Source: Masters Abstracts International, Volume: 52-02.
Contained By:
Masters Abstracts International52-02(E).
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1545588
ISBN:
9781303408731
Maximum principle preserving high order schemes for convection-dominated diffusion equations.
Jiang, Yi.
Maximum principle preserving high order schemes for convection-dominated diffusion equations.
- 96 p.
Source: Masters Abstracts International, Volume: 52-02.
Thesis (M.S.)--Michigan Technological University, 2013.
The maximum principle is an important property of solutions to PDE. Correspondingly, it's of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving (MPP) high order finite volume (FV) WENO scheme, and then propose a new parametrized MPP high order finite difference (FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method.
ISBN: 9781303408731Subjects--Topical Terms:
515831
Mathematics.
Maximum principle preserving high order schemes for convection-dominated diffusion equations.
LDR
:01908nam a2200265 4500
001
1960897
005
20140701144840.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303408731
035
$a
(MiAaPQ)AAI1545588
035
$a
AAI1545588
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Jiang, Yi.
$3
1065328
245
1 0
$a
Maximum principle preserving high order schemes for convection-dominated diffusion equations.
300
$a
96 p.
500
$a
Source: Masters Abstracts International, Volume: 52-02.
500
$a
Adviser: Zhengfu Xu.
502
$a
Thesis (M.S.)--Michigan Technological University, 2013.
520
$a
The maximum principle is an important property of solutions to PDE. Correspondingly, it's of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving (MPP) high order finite volume (FV) WENO scheme, and then propose a new parametrized MPP high order finite difference (FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method.
590
$a
School code: 0129.
650
4
$a
Mathematics.
$3
515831
690
$a
0405
710
2
$a
Michigan Technological University.
$b
Mathematical Sciences.
$3
2096669
773
0
$t
Masters Abstracts International
$g
52-02(E).
790
$a
0129
791
$a
M.S.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1545588
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9255725
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入