語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimal stopping for Markov modulate...
~
Seaquist, Thomas William.
FindBook
Google Book
Amazon
博客來
Optimal stopping for Markov modulated Ito-Diffusions with applications to finance.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Optimal stopping for Markov modulated Ito-Diffusions with applications to finance./
作者:
Seaquist, Thomas William.
面頁冊數:
90 p.
附註:
Source: Dissertation Abstracts International, Volume: 74-11(E), Section: B.
Contained By:
Dissertation Abstracts International74-11B(E).
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3568911
ISBN:
9781303238222
Optimal stopping for Markov modulated Ito-Diffusions with applications to finance.
Seaquist, Thomas William.
Optimal stopping for Markov modulated Ito-Diffusions with applications to finance.
- 90 p.
Source: Dissertation Abstracts International, Volume: 74-11(E), Section: B.
Thesis (Ph.D.)--The University of Texas at Arlington, 2013.
Despite the outstanding success of the Black-Scholes model, it relies on the assumption that drift and volatility of the underlying equity remain constant throughout time. This inaccuracy has motivated a number of interesting and innovative refinements, one of the most natural being Markov modulation. In this dissertation we analyze a variety of financially motivated optimal stopping problems under Markov modulated Ito-Diffusions. In Chapter 3, we generalize and refine a technique developed in [13] pricing an infinite time horizon American put option and we present a rigorous proof of optimality. In Chapter 3 we use this generalized technique to discover an optimal selling strategy for an infinite horizon American style forward contract. In so doing, we extend the work done in [12]. Finally in Chapter 5 we price the infinite horizon American put using a non-traditional model of a mean reverting Ornstein-Uhlenbeck process, further illustrating the broad scope of applicability of the technique developed herein.
ISBN: 9781303238222Subjects--Topical Terms:
515831
Mathematics.
Optimal stopping for Markov modulated Ito-Diffusions with applications to finance.
LDR
:01941nam a2200289 4500
001
1959867
005
20140520124928.5
008
150210s2013 ||||||||||||||||| ||eng d
020
$a
9781303238222
035
$a
(MiAaPQ)AAI3568911
035
$a
AAI3568911
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Seaquist, Thomas William.
$3
2095403
245
1 0
$a
Optimal stopping for Markov modulated Ito-Diffusions with applications to finance.
300
$a
90 p.
500
$a
Source: Dissertation Abstracts International, Volume: 74-11(E), Section: B.
500
$a
Adviser: Andrzej Korzeniowski.
502
$a
Thesis (Ph.D.)--The University of Texas at Arlington, 2013.
520
$a
Despite the outstanding success of the Black-Scholes model, it relies on the assumption that drift and volatility of the underlying equity remain constant throughout time. This inaccuracy has motivated a number of interesting and innovative refinements, one of the most natural being Markov modulation. In this dissertation we analyze a variety of financially motivated optimal stopping problems under Markov modulated Ito-Diffusions. In Chapter 3, we generalize and refine a technique developed in [13] pricing an infinite time horizon American put option and we present a rigorous proof of optimality. In Chapter 3 we use this generalized technique to discover an optimal selling strategy for an infinite horizon American style forward contract. In so doing, we extend the work done in [12]. Finally in Chapter 5 we price the infinite horizon American put using a non-traditional model of a mean reverting Ornstein-Uhlenbeck process, further illustrating the broad scope of applicability of the technique developed herein.
590
$a
School code: 2502.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Economics, Finance.
$3
626650
650
4
$a
Applied Mathematics.
$3
1669109
690
$a
0405
690
$a
0508
690
$a
0364
710
2
$a
The University of Texas at Arlington.
$b
Mathematics.
$3
1682219
773
0
$t
Dissertation Abstracts International
$g
74-11B(E).
790
$a
2502
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3568911
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9254695
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入