語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
On the zeros of automorphic forms.
~
Jung, Junehyuk.
FindBook
Google Book
Amazon
博客來
On the zeros of automorphic forms.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
On the zeros of automorphic forms./
作者:
Jung, Junehyuk.
面頁冊數:
102 p.
附註:
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Contained By:
Dissertation Abstracts International74-09B(E).
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3562204
ISBN:
9781303097515
On the zeros of automorphic forms.
Jung, Junehyuk.
On the zeros of automorphic forms.
- 102 p.
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Thesis (Ph.D.)--Princeton University, 2013.
The subject of this thesis is the zeros of automorphic forms. In the first part, we study the asymptotic behavior of nodal lines of Maass (cusp) forms on hyperbolic surfaces via taking intersection with various curves. The first result is the upper bounds for the number of intersection between nodal lines of Maass cusp forms &phis; and various fixed analytic curves. Let lambda&phis; is the Laplacian eigenvalue of &phis; and let Z&phis; be the set of nodal lines of &phis;. When Y is a compact hyperbolic surface and gamma a geodesic circle, or when Y is a non-compact hyperbolic surface with finite volume and gamma is a closed horocycle we prove that the number of intersections between Z&phis; and gamma is O( lf ).
ISBN: 9781303097515Subjects--Topical Terms:
515831
Mathematics.
On the zeros of automorphic forms.
LDR
:02802nmm a2200313 4500
001
1932190
005
20140805082238.5
008
140827s2013 ||||||||||||||||| ||eng d
020
$a
9781303097515
035
$a
(MiAaPQ)AAI3562204
035
$a
AAI3562204
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Jung, Junehyuk.
$3
2049793
245
1 0
$a
On the zeros of automorphic forms.
300
$a
102 p.
500
$a
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
500
$a
Adviser: Peter C. Sarnak.
502
$a
Thesis (Ph.D.)--Princeton University, 2013.
520
$a
The subject of this thesis is the zeros of automorphic forms. In the first part, we study the asymptotic behavior of nodal lines of Maass (cusp) forms on hyperbolic surfaces via taking intersection with various curves. The first result is the upper bounds for the number of intersection between nodal lines of Maass cusp forms &phis; and various fixed analytic curves. Let lambda&phis; is the Laplacian eigenvalue of &phis; and let Z&phis; be the set of nodal lines of &phis;. When Y is a compact hyperbolic surface and gamma a geodesic circle, or when Y is a non-compact hyperbolic surface with finite volume and gamma is a closed horocycle we prove that the number of intersections between Z&phis; and gamma is O( lf ).
520
$a
The second result is a quantitative statement of the quantum ergodicity for Maass-Hecke cusp forms on X=SL2,Z \H . As an application we deduce that the number of nodal domains of &phis; which intersect a fixed geodesic segment in {iy | y > 0} ⊂ H increases with the eigenvalue, with a small number of exceptional &phis;'s.
520
$a
In the second part of the thesis, we prove for various families of automorphic forms that the positive-definite automorphic forms are sparse. If pi is a self-dual cuspidal automorphic form on GLm/ Q , then we say pi is positive-definite if Lambda(1/2 + it, pi) is a positive-definite function in t ∈ R , where Lambda(s, pi) is the completed L-function attached to pi. For Maass cusp forms, the nodal line not meeting the y-axis and the positive-definiteness are the same. A holomorphic cusp form is positive-definite if and only if it has no zero on the y-axis.
520
$a
In the proof we formulate an axiomatic criterion about sets of automorphic forms pi satisfying certain averages when suitably ordered, which ensures that almost all pi's are not positive-definite within such sets. We then apply the result to various well known families of automorphic forms.
590
$a
School code: 0181.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Applied Mathematics.
$3
1669109
690
$a
0405
690
$a
0364
710
2
$a
Princeton University.
$b
Mathematics.
$3
2049791
773
0
$t
Dissertation Abstracts International
$g
74-09B(E).
790
$a
0181
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3562204
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9240493
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入