語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Minimizing breast cancer symptomatol...
~
Besse, Anna Marie.
FindBook
Google Book
Amazon
博客來
Minimizing breast cancer symptomatology in recurrence prediction using artificial neural networks.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Minimizing breast cancer symptomatology in recurrence prediction using artificial neural networks./
作者:
Besse, Anna Marie.
面頁冊數:
40 p.
附註:
Source: Masters Abstracts International, Volume: 42-03, page: 0957.
Contained By:
Masters Abstracts International42-03.
標題:
Computer Science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1417027
ISBN:
0496218115
Minimizing breast cancer symptomatology in recurrence prediction using artificial neural networks.
Besse, Anna Marie.
Minimizing breast cancer symptomatology in recurrence prediction using artificial neural networks.
- 40 p.
Source: Masters Abstracts International, Volume: 42-03, page: 0957.
Thesis (M.Eng.)--University of Louisville, 2003.
This thesis pursues the objective of helping doctors make critical decisions about breast cancer patients by using artificial neural networks to reduce the number of symptoms the doctor must evaluate in making diagnostic decisions. By narrowing the number of symptoms that must be taken into consideration, we can help reduce the complexity of the process and improve the quality of the diagnostic process overall.
ISBN: 0496218115Subjects--Topical Terms:
626642
Computer Science.
Minimizing breast cancer symptomatology in recurrence prediction using artificial neural networks.
LDR
:01803nmm 2200289 4500
001
1847621
005
20051108095431.5
008
130614s2003 eng d
020
$a
0496218115
035
$a
(UnM)AAI1417027
035
$a
AAI1417027
040
$a
UnM
$c
UnM
100
1
$a
Besse, Anna Marie.
$3
1935659
245
1 0
$a
Minimizing breast cancer symptomatology in recurrence prediction using artificial neural networks.
300
$a
40 p.
500
$a
Source: Masters Abstracts International, Volume: 42-03, page: 0957.
502
$a
Thesis (M.Eng.)--University of Louisville, 2003.
520
$a
This thesis pursues the objective of helping doctors make critical decisions about breast cancer patients by using artificial neural networks to reduce the number of symptoms the doctor must evaluate in making diagnostic decisions. By narrowing the number of symptoms that must be taken into consideration, we can help reduce the complexity of the process and improve the quality of the diagnostic process overall.
520
$a
At the beginning of the project clinical information on 492 breast cancer patients was acquired for study. Each patient's data included information such as age, symptom measurements, and whether or not the patient experienced relapse. The first step in the project was to complete pre-processing of the data and put it in a useful format for the Stuttgart Neural Network Simulation software package to manipulate and extract results. Once pre-processing was completed the process of discovery began. (Abstract shortened by UMI.)
590
$a
School code: 0110.
650
4
$a
Computer Science.
$3
626642
650
4
$a
Artificial Intelligence.
$3
769149
650
4
$a
Health Sciences, Oncology.
$3
1018566
650
4
$a
Biology, Biostatistics.
$3
1018416
690
$a
0984
690
$a
0800
690
$a
0992
690
$a
0308
710
2 0
$a
University of Louisville.
$3
1017614
773
0
$t
Masters Abstracts International
$g
42-03.
790
$a
0110
791
$a
M.Eng.
792
$a
2003
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=1417027
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9197135
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入