Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Numerical solutions of electromagnet...
~
Min, Xiaoyi.
Linked to FindBook
Google Book
Amazon
博客來
Numerical solutions of electromagnetic problems by integral equation methods and finite-difference time-domain method.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Numerical solutions of electromagnetic problems by integral equation methods and finite-difference time-domain method./
Author:
Min, Xiaoyi.
Description:
260 p.
Notes:
Source: Dissertation Abstracts International, Volume: 51-02, Section: B, page: 0815.
Contained By:
Dissertation Abstracts International51-02B.
Subject:
Physics, Radiation. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9018724
Numerical solutions of electromagnetic problems by integral equation methods and finite-difference time-domain method.
Min, Xiaoyi.
Numerical solutions of electromagnetic problems by integral equation methods and finite-difference time-domain method.
- 260 p.
Source: Dissertation Abstracts International, Volume: 51-02, Section: B, page: 0815.
Thesis (Ph.D.)--Michigan State University, 1989.
This thesis first presents the study of the interaction of electromagnetic waves with three-dimensional heterogeneous, dielectric, magnetic, and lossy bodies by surface integral equation modeling. Based on the equivalence principle, a set of coupled surface integral equations is formulated and then solved numerically by the method of moments. Triangular elements are used to model the interfaces of the heterogeneous body, and vector basis functions are defined to expand the unknown current in the formulation. The validity of this formulation is verified by applying it to concentric spheres for which an exact solution exists. The potential applications of this formulation to a partially coated sphere and a homogeneous human body are discussed.Subjects--Topical Terms:
1019212
Physics, Radiation.
Numerical solutions of electromagnetic problems by integral equation methods and finite-difference time-domain method.
LDR
:03184nmm 2200265 4500
001
1841414
005
20050907145126.5
008
130614s1989 eng d
035
$a
(UnM)AAI9018724
035
$a
AAI9018724
040
$a
UnM
$c
UnM
100
1
$a
Min, Xiaoyi.
$3
1929714
245
1 0
$a
Numerical solutions of electromagnetic problems by integral equation methods and finite-difference time-domain method.
300
$a
260 p.
500
$a
Source: Dissertation Abstracts International, Volume: 51-02, Section: B, page: 0815.
502
$a
Thesis (Ph.D.)--Michigan State University, 1989.
520
$a
This thesis first presents the study of the interaction of electromagnetic waves with three-dimensional heterogeneous, dielectric, magnetic, and lossy bodies by surface integral equation modeling. Based on the equivalence principle, a set of coupled surface integral equations is formulated and then solved numerically by the method of moments. Triangular elements are used to model the interfaces of the heterogeneous body, and vector basis functions are defined to expand the unknown current in the formulation. The validity of this formulation is verified by applying it to concentric spheres for which an exact solution exists. The potential applications of this formulation to a partially coated sphere and a homogeneous human body are discussed.
520
$a
Next, this thesis also introduces an efficient new set of integral equations for treating the scattering problem of a perfectly conducting body coated with a thin magnetically lossy layer. These electric field integral equations and magnetic field integral equations are numerically solved by the method of moments (MoM). To validate the derived integral equations, an alternative method to solve the scattering problem of an infinite circular cylinder coated with a thin magnetic lossy layer has also been developed, based on the eigenmode expansion. Results for the radar cross section and current densities via the MoM and the eigenmode expansion method are compared. The agreement is excellent. The finite difference time domain method is subsequently implemented to solve a metallic object coated with a magnetic thin layer and numerical results are compared with that by the MoM.
520
$a
Finally, this thesis presents an application of the finite-difference time-domain approach to the problem of electromagnetic receiving and scattering by a cavity-backed antenna situated on an infinite conducting plane. This application involves modifications of Yee's model, which applies the difference approximations of field derivatives to differential operators in the Maxwell's curl equations, and applies the radiation boundary condition on a truncated boundary surface. The modifications are based on the integral forms of the Maxwell equations and image theory. The effects of an infinitely thin impedance sheet on receiving and scattering characteristics of the antenna are investigated.
590
$a
School code: 0128.
650
4
$a
Physics, Radiation.
$3
1019212
650
4
$a
Engineering, Electronics and Electrical.
$3
626636
690
$a
0756
690
$a
0544
710
2 0
$a
Michigan State University.
$3
676168
773
0
$t
Dissertation Abstracts International
$g
51-02B.
790
$a
0128
791
$a
Ph.D.
792
$a
1989
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=9018724
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9190928
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login