語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Scaling in piecewise linear maps.
~
Kouptsov, Konstantin L.
FindBook
Google Book
Amazon
博客來
Scaling in piecewise linear maps.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Scaling in piecewise linear maps./
作者:
Kouptsov, Konstantin L.
面頁冊數:
78 p.
附註:
Source: Dissertation Abstracts International, Volume: 63-12, Section: B, page: 5888.
Contained By:
Dissertation Abstracts International63-12B.
標題:
Physics, General. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3075503
ISBN:
049395712X
Scaling in piecewise linear maps.
Kouptsov, Konstantin L.
Scaling in piecewise linear maps.
- 78 p.
Source: Dissertation Abstracts International, Volume: 63-12, Section: B, page: 5888.
Thesis (Ph.D.)--New York University, 2003.
A general formalism for computed-assisted proofs for the orbit structure of certain non ergodic piecewise affine maps of the torus is developed. For a specific class of maps, it is proved that if the eigenvalues are roots of unity of degree four over the rationals (the simplest nontrivial case, comprising 8 maps), then the periodic orbits are organized into finitely many renormalizable families, with exponentially increasing period, plus a finite number of finite families. The proof is based on exact computations in algebraic number rings, where units play the role of scaling parameters. These results are applied to the analysis of propagation of round-off errors in planar rotations by certain rational angles, proving periodicity for almost all initial conditions.
ISBN: 049395712XSubjects--Topical Terms:
1018488
Physics, General.
Scaling in piecewise linear maps.
LDR
:01618nmm 2200277 4500
001
1838385
005
20050526083748.5
008
130614s2003 eng d
020
$a
049395712X
035
$a
(UnM)AAI3075503
035
$a
AAI3075503
040
$a
UnM
$c
UnM
100
1
$a
Kouptsov, Konstantin L.
$3
1926803
245
1 0
$a
Scaling in piecewise linear maps.
300
$a
78 p.
500
$a
Source: Dissertation Abstracts International, Volume: 63-12, Section: B, page: 5888.
500
$a
Adviser: John H. Lowenstein.
502
$a
Thesis (Ph.D.)--New York University, 2003.
520
$a
A general formalism for computed-assisted proofs for the orbit structure of certain non ergodic piecewise affine maps of the torus is developed. For a specific class of maps, it is proved that if the eigenvalues are roots of unity of degree four over the rationals (the simplest nontrivial case, comprising 8 maps), then the periodic orbits are organized into finitely many renormalizable families, with exponentially increasing period, plus a finite number of finite families. The proof is based on exact computations in algebraic number rings, where units play the role of scaling parameters. These results are applied to the analysis of propagation of round-off errors in planar rotations by certain rational angles, proving periodicity for almost all initial conditions.
590
$a
School code: 0146.
650
4
$a
Physics, General.
$3
1018488
650
4
$a
Mathematics.
$3
515831
690
$a
0605
690
$a
0405
710
2 0
$a
New York University.
$3
515735
773
0
$t
Dissertation Abstracts International
$g
63-12B.
790
1 0
$a
Lowenstein, John H.,
$e
advisor
790
$a
0146
791
$a
Ph.D.
792
$a
2003
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3075503
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9187899
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入