語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Stochastic volatility models: Optio...
~
Yang, Jian.
FindBook
Google Book
Amazon
博客來
Stochastic volatility models: Option price approximation, asymptotics and maximum likelihood estimation.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Stochastic volatility models: Option price approximation, asymptotics and maximum likelihood estimation./
作者:
Yang, Jian.
面頁冊數:
95 p.
附註:
Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3841.
Contained By:
Dissertation Abstracts International67-07B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3223755
ISBN:
9780542777660
Stochastic volatility models: Option price approximation, asymptotics and maximum likelihood estimation.
Yang, Jian.
Stochastic volatility models: Option price approximation, asymptotics and maximum likelihood estimation.
- 95 p.
Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3841.
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2006.
This thesis deals with analytical approximation of option pricing; option price asymptotics and maximum likelihood estimation under a general class of stochastic volatility models.
ISBN: 9780542777660Subjects--Topical Terms:
515831
Mathematics.
Stochastic volatility models: Option price approximation, asymptotics and maximum likelihood estimation.
LDR
:02265nmm 2200313 4500
001
1834109
005
20071116164338.5
008
130610s2006 eng d
020
$a
9780542777660
035
$a
(UMI)AAI3223755
035
$a
AAI3223755
040
$a
UMI
$c
UMI
100
1
$a
Yang, Jian.
$3
1904519
245
1 0
$a
Stochastic volatility models: Option price approximation, asymptotics and maximum likelihood estimation.
300
$a
95 p.
500
$a
Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3841.
500
$a
Advisers: Richard B. Sowers; Neil D. Pearson.
502
$a
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2006.
520
$a
This thesis deals with analytical approximation of option pricing; option price asymptotics and maximum likelihood estimation under a general class of stochastic volatility models.
520
$a
In the first part we develop an asymptotic expansion for short term option price under a general class of stochastic volatility models. The explicit expansion is obtained by decomposing; the pricing PDE operator into the Black-Scholes part and a stochastic volatility correction part. The Black-Scholes part is essentially a heat operator which makes lots of calculation explicit since the resulting integrals are Gaussian. We also study several type of option price asymptotics under stochastic volatility model in the sense of near maturity and near the money.
520
$a
The second part of this thesis describes an approach that uses the above asymptotic expansion to invert, the option pricing function and extract the latent volatility, thereby overcoming one of the key difficulties in the estimation problem. The method is applied to estimate three popular stochastic volatility models, two of which have not previously been amenable to maximum likelihood estimation with option price data other than through the use of proxies for the latent volatility.
590
$a
School code: 0090.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Economics, Finance.
$3
626650
690
$a
0405
690
$a
0508
710
2 0
$a
University of Illinois at Urbana-Champaign.
$3
626646
773
0
$t
Dissertation Abstracts International
$g
67-07B.
790
1 0
$a
Sowers, Richard B.,
$e
advisor
790
1 0
$a
Pearson, Neil D.,
$e
advisor
790
$a
0090
791
$a
Ph.D.
792
$a
2006
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3223755
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9225128
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入