語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Angled triangulations of link comple...
~
Futer, David.
FindBook
Google Book
Amazon
博客來
Angled triangulations of link complements.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Angled triangulations of link complements./
作者:
Futer, David.
面頁冊數:
102 p.
附註:
Source: Dissertation Abstracts International, Volume: 66-08, Section: B, page: 4256.
Contained By:
Dissertation Abstracts International66-08B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3187289
ISBN:
9780542295072
Angled triangulations of link complements.
Futer, David.
Angled triangulations of link complements.
- 102 p.
Source: Dissertation Abstracts International, Volume: 66-08, Section: B, page: 4256.
Thesis (Ph.D.)--Stanford University, 2005.
The goal of this thesis is to relate the projection diagram of a knot or link in S3 to the geometry and topology of the link complement. We use the diagram of a link K to obtain a Dehn surgery description of K from a hyperbolic link L. The simple geometry of S 3\L allows us to decompose it into ideal hyperbolic polyhedra, whose dihedral angles provide a lot of combinatorial information. One consequence of this approach is a mild condition on the original diagram that ensures K is hyperbolic and all its non-trivial Dehn fillings are hyperbolike. Another, closely related, consequence is a diagrammatic lower bound on the genus of K.
ISBN: 9780542295072Subjects--Topical Terms:
515831
Mathematics.
Angled triangulations of link complements.
LDR
:01989nmm 2200277 4500
001
1828043
005
20061228142300.5
008
130610s2005 eng d
020
$a
9780542295072
035
$a
(UnM)AAI3187289
035
$a
AAI3187289
040
$a
UnM
$c
UnM
100
1
$a
Futer, David.
$3
1783640
245
1 0
$a
Angled triangulations of link complements.
300
$a
102 p.
500
$a
Source: Dissertation Abstracts International, Volume: 66-08, Section: B, page: 4256.
500
$a
Adviser: Steven P. Kerckhoff.
502
$a
Thesis (Ph.D.)--Stanford University, 2005.
520
$a
The goal of this thesis is to relate the projection diagram of a knot or link in S3 to the geometry and topology of the link complement. We use the diagram of a link K to obtain a Dehn surgery description of K from a hyperbolic link L. The simple geometry of S 3\L allows us to decompose it into ideal hyperbolic polyhedra, whose dihedral angles provide a lot of combinatorial information. One consequence of this approach is a mild condition on the original diagram that ensures K is hyperbolic and all its non-trivial Dehn fillings are hyperbolike. Another, closely related, consequence is a diagrammatic lower bound on the genus of K.
520
$a
When K is an arborescent link, we use the correspondence between the link and a weighted tree to simplify the projection diagram into a particularly nice form. This simplified diagram then allows us to subdivide the link complement into hyperbolic polyhedra and tetrahedra whose dihedral angles fit together in a consistent fashion. An angled decomposition of this type implies that K is hyperbolic and provides a robust combinatorial framework for more detailed investigations into its geometry.
590
$a
School code: 0212.
650
4
$a
Mathematics.
$3
515831
690
$a
0405
710
2 0
$a
Stanford University.
$3
754827
773
0
$t
Dissertation Abstracts International
$g
66-08B.
790
1 0
$a
Kerckhoff, Steven P.,
$e
advisor
790
$a
0212
791
$a
Ph.D.
792
$a
2005
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3187289
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9218906
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入