語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Vertex operator algebras and Kazhdan...
~
Zhang, Lin.
FindBook
Google Book
Amazon
博客來
Vertex operator algebras and Kazhdan-Lusztig's tensor category.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Vertex operator algebras and Kazhdan-Lusztig's tensor category./
作者:
Zhang, Lin.
面頁冊數:
74 p.
附註:
Source: Dissertation Abstracts International, Volume: 65-06, Section: B, page: 2965.
Contained By:
Dissertation Abstracts International65-06B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3134911
ISBN:
0496821369
Vertex operator algebras and Kazhdan-Lusztig's tensor category.
Zhang, Lin.
Vertex operator algebras and Kazhdan-Lusztig's tensor category.
- 74 p.
Source: Dissertation Abstracts International, Volume: 65-06, Section: B, page: 2965.
Thesis (Ph.D.)--Rutgers The State University of New Jersey - New Brunswick, 2004.
The main goal of this thesis is to study and illuminate, from the viewpoint of vertex operator algebras, a certain braided tensor category of Kazhdan and Lusztig based on certain modules for an affine Lie algebra. We use a new logarithmic generalization, due to Huang, Lepowsky and Zhang, of Huang and Lepowsky's tensor product theory for modules for a vertex operator algebra. We also apply this generalized tensor product theory to vertex algebras based on lattices.
ISBN: 0496821369Subjects--Topical Terms:
515831
Mathematics.
Vertex operator algebras and Kazhdan-Lusztig's tensor category.
LDR
:02851nmm 2200289 4500
001
1814479
005
20060526065254.5
008
130610s2004 eng d
020
$a
0496821369
035
$a
(UnM)AAI3134911
035
$a
AAI3134911
040
$a
UnM
$c
UnM
100
1
$a
Zhang, Lin.
$3
1620929
245
1 0
$a
Vertex operator algebras and Kazhdan-Lusztig's tensor category.
300
$a
74 p.
500
$a
Source: Dissertation Abstracts International, Volume: 65-06, Section: B, page: 2965.
500
$a
Director: James Lepowsky.
502
$a
Thesis (Ph.D.)--Rutgers The State University of New Jersey - New Brunswick, 2004.
520
$a
The main goal of this thesis is to study and illuminate, from the viewpoint of vertex operator algebras, a certain braided tensor category of Kazhdan and Lusztig based on certain modules for an affine Lie algebra. We use a new logarithmic generalization, due to Huang, Lepowsky and Zhang, of Huang and Lepowsky's tensor product theory for modules for a vertex operator algebra. We also apply this generalized tensor product theory to vertex algebras based on lattices.
520
$a
We first motivate the tensor product theory and introduce some basic notions and results. Then we study the "compatibility condition," which originated as an important tool in the tensor product theory of Huang and Lepowsky. We give a "strong lower truncation condition" and prove its equivalence to the usual lower truncation together with the compatibility condition. We then focus on the category considered by Kazhdan and Lusztig and build the vertex operator algebraic setup for a tensor product theory for this category. Using the new truncation condition we prove the equivalence of the tensor product functor constructed by Kazhdan and Lusztig and the one constructed in the logarithmic tensor product theory. We use certain generalized Knizhnik-Zamolodchikov equations to prove the "convergence and expansion properties" for this category and obtain a new construction of the natural associativity isomorphisms, and hence of the braided tensor category structure. In addition, from this we obtain vertex tensor category structure on this category.
520
$a
Next we study the module category for a "conformal vertex algebra" constructed from a hyperbolic even lattice. We carry out the tensor product theory for such a category and study the resulting vertex tensor categories and braided tensor categories. At the end we prove a result, also related to tensor product theory, concerning the relation between the lower truncation condition and the "Jacobi identity."
590
$a
School code: 0190.
650
4
$a
Mathematics.
$3
515831
690
$a
0405
710
2 0
$a
Rutgers The State University of New Jersey - New Brunswick.
$3
1017590
773
0
$t
Dissertation Abstracts International
$g
65-06B.
790
1 0
$a
Lepowsky, James,
$e
advisor
790
$a
0190
791
$a
Ph.D.
792
$a
2004
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3134911
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9205342
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入