語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Development of the MIN-N family of t...
~
Liu, Yan Jane.
FindBook
Google Book
Amazon
博客來
Development of the MIN-N family of triangular anisoparametric Mindlin plate elements.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Development of the MIN-N family of triangular anisoparametric Mindlin plate elements./
作者:
Liu, Yan Jane.
面頁冊數:
126 p.
附註:
Source: Dissertation Abstracts International, Volume: 63-06, Section: B, page: 2937.
Contained By:
Dissertation Abstracts International63-06B.
標題:
Engineering, Civil. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3057369
ISBN:
0493727485
Development of the MIN-N family of triangular anisoparametric Mindlin plate elements.
Liu, Yan Jane.
Development of the MIN-N family of triangular anisoparametric Mindlin plate elements.
- 126 p.
Source: Dissertation Abstracts International, Volume: 63-06, Section: B, page: 2937.
Thesis (Ph.D.)--University of Hawaii, 2002.
A general formulation for a family of N-node, higher-order, displacement-compatible, triangular, Reissner/Mindlin shear-deformable plate elements, MIN-<italic>N</italic>, is presented in this work. The development of MIN-<italic>N</italic> has been motivated primarily by the success of the 3-node, 9 degree-of-freedom, low-order, constant moment, anisoparametric triangular plate element, MIN3. This element avoids shear locking by using so-called anisoparametric interpolation, which is to use interpolation functions one degree higher for transverse displacement than for bending rotations. The methodology to derive members of the MIN-<italic>N</italic> family based on the anisoparametric strategy is presented. The family of MIN-<italic>N</italic> elements possesses complete, fully compatible kinematic fields. In the thin limit, the element must satisfy the Kirchhoff constraints of zero transverse shear strains. General formulas for these constraints are developed.
ISBN: 0493727485Subjects--Topical Terms:
783781
Engineering, Civil.
Development of the MIN-N family of triangular anisoparametric Mindlin plate elements.
LDR
:02706nmm 2200301 4500
001
1810338
005
20040126131513.5
008
130610s2002 eng d
020
$a
0493727485
035
$a
(UnM)AAI3057369
035
$a
AAI3057369
040
$a
UnM
$c
UnM
100
1
$a
Liu, Yan Jane.
$3
1899950
245
1 0
$a
Development of the MIN-N family of triangular anisoparametric Mindlin plate elements.
300
$a
126 p.
500
$a
Source: Dissertation Abstracts International, Volume: 63-06, Section: B, page: 2937.
500
$a
Chairperson: H. Ronald Riggs.
502
$a
Thesis (Ph.D.)--University of Hawaii, 2002.
520
$a
A general formulation for a family of N-node, higher-order, displacement-compatible, triangular, Reissner/Mindlin shear-deformable plate elements, MIN-<italic>N</italic>, is presented in this work. The development of MIN-<italic>N</italic> has been motivated primarily by the success of the 3-node, 9 degree-of-freedom, low-order, constant moment, anisoparametric triangular plate element, MIN3. This element avoids shear locking by using so-called anisoparametric interpolation, which is to use interpolation functions one degree higher for transverse displacement than for bending rotations. The methodology to derive members of the MIN-<italic>N</italic> family based on the anisoparametric strategy is presented. The family of MIN-<italic>N</italic> elements possesses complete, fully compatible kinematic fields. In the thin limit, the element must satisfy the Kirchhoff constraints of zero transverse shear strains. General formulas for these constraints are developed.
520
$a
As an example of a higher-order member, the 6-node, 18 degree-of-freedom, triangular element MIN6 is developed. MIN6 has a cubic variation of transverse displacement and quadratic variation of rotational displacements. The element, with its straightforward, pure, displacement-based formulation, is implemented in a finite element program and tested extensively. Numerical results for both isotropic and orthotropic materials show that MIN6 exhibits good performance for both static and dynamic analyses in the linear, elastic regime. Explicit formulas for Kirchhoff constraints in the thin limit, in terms of element degrees-of-freedom, are developed. The results illustrate that the fully-integrated MIN6 element neither locks nor is excessively stiff in the thin limit, even for coarse meshes.
590
$a
School code: 0085.
650
4
$a
Engineering, Civil.
$3
783781
650
4
$a
Applied Mechanics.
$3
1018410
650
4
$a
Engineering, Aerospace.
$3
1018395
690
$a
0543
690
$a
0346
690
$a
0538
710
2 0
$a
University of Hawaii.
$3
1250246
773
0
$t
Dissertation Abstracts International
$g
63-06B.
790
1 0
$a
Riggs, H. Ronald,
$e
advisor
790
$a
0085
791
$a
Ph.D.
792
$a
2002
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3057369
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9171076
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入