語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Organochlorines in steller sea lions...
~
Myers, Matthew John.
FindBook
Google Book
Amazon
博客來
Organochlorines in steller sea lions (Eumetopias jubatus).
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Organochlorines in steller sea lions (Eumetopias jubatus)./
作者:
Myers, Matthew John.
面頁冊數:
117 p.
附註:
Source: Dissertation Abstracts International, Volume: 70-08, Section: B, page: 4564.
Contained By:
Dissertation Abstracts International70-08B.
標題:
Biology, Oceanography. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3374168
ISBN:
9781109338218
Organochlorines in steller sea lions (Eumetopias jubatus).
Myers, Matthew John.
Organochlorines in steller sea lions (Eumetopias jubatus).
- 117 p.
Source: Dissertation Abstracts International, Volume: 70-08, Section: B, page: 4564.
Thesis (Ph.D.)--University of Alaska Fairbanks, 2009.
Existing populations of Steller sea lions (Eumetopias jubatus ) have declined precipitously over the last half-century. Investigations into the cause of this downward trend have focused on many different possible factors. Toxicity caused by the accumulation of organochlorines (OCs), such as polychlorinated biphenyls (PCBs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane or dichlorodiphenyltrichloroethane (DDT), has been demonstrated in marine mammals and was considered here as one possible factor that may have contributed to the decline of Steller sea lions or their failure to recover. The focus of this project was to investigate the relationship of contaminant loads to hormone levels, specifically thyroid hormones and cortisol in Steller sea lions. Two approaches were taken to this study. Firstly, baseline hormone concentrations were identified for the thyroid hormones, thyroxine (T 4) and triiodothyronine (T3), and cortisol. This involves comparison and extrapolation. Secondly, possible risk effects were examined by comparing levels of OCs in captive and free-ranging Steller sea lions to known effects in related species with known physiological thresholds. Serum concentrations of total T4 were highest in Steller sea lions followed by total T3 concentrations. Concentrations of free T4 and free T3 were three to four orders of magnitude lower. Concentrations for all four thyroid hormone measurements tended to a lower level as animals matured beyond the neonatal stage. When thyroid hormones from captive sea lions were evaluated across seasons, all thyroid hormones were highest in the July to September period. Cortisol concentrations were similar in male and female pups. Cortisol varied with age but when considered in regards to time of year when sampled, followed a seasonal pattern. Cortisol was elevated in fall months in captive sea lions (non-pups), which is similar to what is seen in other marine mammals and is likely associated with the annual molt. Male pups from Alaska had lower levels of SigmaPCBs and SigmaDDT when compared to male pups from Russia. Female pups from Alaska were significantly lower in SigmaPCBs than Russian female pups as were female pups for SigmaDDT levels between areas. Anywhere from 12 to 64% (depending on rookery) of Steller sea lion pups investigated for contaminants had concentrations of SigmaPCBs that are high enough to cause physiological problems. Concentrations in blood taken monthly for 2 years in three captive Steller sea lions were similar at any given sampling time and followed a seasonal pattern with levels significantly higher in the summer months of July to September and lower in the three month winter period January to March. Concentrations of OCs in blubber samples collected quarterly for the captive females followed an analogous pattern to blood samples but the captive male sea lion was considerably lower and declined over the study period. A significant relationship between blubber contaminants and lipids was noted in the three captive Steller sea lions. Even though OC contamination has not been hypothesized to be the primary factor that precipitated the population decline, there is a potential for these chemicals to have a negative effect on the health of free-ranging Steller sea lions. These data suggest that concentrations of OCs in Steller sea lions may be high enough to cause endocrine or reproductive dysfunction and could potentially impact fertility or fecundity. Therefore, OC contaminants can not be dismissed as a contributing source to either the decline or the failure to recover of the Steller sea lion population.
ISBN: 9781109338218Subjects--Topical Terms:
783691
Biology, Oceanography.
Organochlorines in steller sea lions (Eumetopias jubatus).
LDR
:04427nam 2200253 4500
001
1404419
005
20111205104751.5
008
130515s2009 ||||||||||||||||| ||eng d
020
$a
9781109338218
035
$a
(UMI)AAI3374168
035
$a
AAI3374168
040
$a
UMI
$c
UMI
100
1
$a
Myers, Matthew John.
$3
1683739
245
1 0
$a
Organochlorines in steller sea lions (Eumetopias jubatus).
300
$a
117 p.
500
$a
Source: Dissertation Abstracts International, Volume: 70-08, Section: B, page: 4564.
502
$a
Thesis (Ph.D.)--University of Alaska Fairbanks, 2009.
520
$a
Existing populations of Steller sea lions (Eumetopias jubatus ) have declined precipitously over the last half-century. Investigations into the cause of this downward trend have focused on many different possible factors. Toxicity caused by the accumulation of organochlorines (OCs), such as polychlorinated biphenyls (PCBs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane or dichlorodiphenyltrichloroethane (DDT), has been demonstrated in marine mammals and was considered here as one possible factor that may have contributed to the decline of Steller sea lions or their failure to recover. The focus of this project was to investigate the relationship of contaminant loads to hormone levels, specifically thyroid hormones and cortisol in Steller sea lions. Two approaches were taken to this study. Firstly, baseline hormone concentrations were identified for the thyroid hormones, thyroxine (T 4) and triiodothyronine (T3), and cortisol. This involves comparison and extrapolation. Secondly, possible risk effects were examined by comparing levels of OCs in captive and free-ranging Steller sea lions to known effects in related species with known physiological thresholds. Serum concentrations of total T4 were highest in Steller sea lions followed by total T3 concentrations. Concentrations of free T4 and free T3 were three to four orders of magnitude lower. Concentrations for all four thyroid hormone measurements tended to a lower level as animals matured beyond the neonatal stage. When thyroid hormones from captive sea lions were evaluated across seasons, all thyroid hormones were highest in the July to September period. Cortisol concentrations were similar in male and female pups. Cortisol varied with age but when considered in regards to time of year when sampled, followed a seasonal pattern. Cortisol was elevated in fall months in captive sea lions (non-pups), which is similar to what is seen in other marine mammals and is likely associated with the annual molt. Male pups from Alaska had lower levels of SigmaPCBs and SigmaDDT when compared to male pups from Russia. Female pups from Alaska were significantly lower in SigmaPCBs than Russian female pups as were female pups for SigmaDDT levels between areas. Anywhere from 12 to 64% (depending on rookery) of Steller sea lion pups investigated for contaminants had concentrations of SigmaPCBs that are high enough to cause physiological problems. Concentrations in blood taken monthly for 2 years in three captive Steller sea lions were similar at any given sampling time and followed a seasonal pattern with levels significantly higher in the summer months of July to September and lower in the three month winter period January to March. Concentrations of OCs in blubber samples collected quarterly for the captive females followed an analogous pattern to blood samples but the captive male sea lion was considerably lower and declined over the study period. A significant relationship between blubber contaminants and lipids was noted in the three captive Steller sea lions. Even though OC contamination has not been hypothesized to be the primary factor that precipitated the population decline, there is a potential for these chemicals to have a negative effect on the health of free-ranging Steller sea lions. These data suggest that concentrations of OCs in Steller sea lions may be high enough to cause endocrine or reproductive dysfunction and could potentially impact fertility or fecundity. Therefore, OC contaminants can not be dismissed as a contributing source to either the decline or the failure to recover of the Steller sea lion population.
590
$a
School code: 0006.
650
4
$a
Biology, Oceanography.
$3
783691
650
4
$a
Biology, Animal Physiology.
$3
1017835
690
$a
0416
690
$a
0433
710
2
$a
University of Alaska Fairbanks.
$3
718922
773
0
$t
Dissertation Abstracts International
$g
70-08B.
790
$a
0006
791
$a
Ph.D.
792
$a
2009
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3374168
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9167558
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入