語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Review mining from online media.
~
Liu, Yang.
FindBook
Google Book
Amazon
博客來
Review mining from online media.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Review mining from online media./
作者:
Liu, Yang.
面頁冊數:
123 p.
附註:
Source: Dissertation Abstracts International, Volume: 70-09, Section: B, page: 5616.
Contained By:
Dissertation Abstracts International70-09B.
標題:
Computer Science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=NR51735
ISBN:
9780494517352
Review mining from online media.
Liu, Yang.
Review mining from online media.
- 123 p.
Source: Dissertation Abstracts International, Volume: 70-09, Section: B, page: 5616.
Thesis (Ph.D.)--York University (Canada), 2009.
Online reviews are becoming an ever popular source of information. In this thesis, we study three important problems in the contexts of automatic review mining from online media, and propose a set of new techniques to address the challenges arising therein.
ISBN: 9780494517352Subjects--Topical Terms:
626642
Computer Science.
Review mining from online media.
LDR
:01958nam 2200253 4500
001
1392727
005
20110218131340.5
008
130515s2009 ||||||||||||||||| ||eng d
020
$a
9780494517352
035
$a
(UMI)AAINR51735
035
$a
AAINR51735
040
$a
UMI
$c
UMI
100
1
$a
Liu, Yang.
$3
1026508
245
1 0
$a
Review mining from online media.
300
$a
123 p.
500
$a
Source: Dissertation Abstracts International, Volume: 70-09, Section: B, page: 5616.
502
$a
Thesis (Ph.D.)--York University (Canada), 2009.
520
$a
Online reviews are becoming an ever popular source of information. In this thesis, we study three important problems in the contexts of automatic review mining from online media, and propose a set of new techniques to address the challenges arising therein.
520
$a
Mining opinions and sentiments from reviews presents unique challenges that cannot be easily addressed by conventional text mining methods. Therefore, we first propose novel approaches that can provide a comprehensive understanding of the sentiments reflected in the reviews. Equipped with such approaches, we then develop models and algorithms that can use the extracted opinions and sentiments for predicting product sales performance. As a case study, we investigate how to predict box office revenues from Weblogs, which have recently received a lot of attention due to its high popularity. Orthogonal to the problem of identifying reviewer opinions, we consider how to automatically evaluate the helpfulness of reviews, and consequently develop novel methods to identify the most helpful reviews for a particular product. Properly used, we expect such models and algorithms to be highly helpful in various aspects of business intelligence.
590
$a
School code: 0267.
650
4
$a
Computer Science.
$3
626642
690
$a
0984
710
2
$a
York University (Canada).
$3
1017889
773
0
$t
Dissertation Abstracts International
$g
70-09B.
790
$a
0267
791
$a
Ph.D.
792
$a
2009
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=NR51735
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9155866
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入