Languages
Mitrea, Marius.
Overview
Works: | 2 works in 7 publications in 1 languages |
---|
Titles
Multi-layer potentials and boundary problems : = for higher-order elliptic systems in Lipschitz domains /
by:
Mitrea, Irina.; Mitrea, Marius.
(Language materials, printed)
Hardy spaces on Ahlfors-regular Quasi metric spaces = a sharp theory /
by:
Alvarado, Ryan.; Mitrea, Marius.; SpringerLink (Online service)
(Language materials, printed)
Geometric harmonic analysis.. I,. A sharp divergence theorem with nontangential pointwise traces
by:
Mitrea, Irina.; Mitrea, Marius.; SpringerLink (Online service); Mitrea, Dorina.
(Electronic resources)
Geometric harmonic analysis.. II,. Function spaces measuring size and smoothness on rough sets
by:
Mitrea, Irina.; Mitrea, Marius.; SpringerLink (Online service); Mitrea, Dorina.
(Electronic resources)
Clifford wavelets, singular integrals, and Hardy spaces /
by:
Mitrea, Marius.
(Language materials, printed)
Geometric harmonic analysis.. III,. Integral representations, Calderon-Zygmund theory, Fatou theorems, and applications to scattering
by:
Mitrea, Dorina.; Mitrea, Irina.; Mitrea, Marius.; SpringerLink (Online service)
(Electronic resources)
Geometric harmonic analysis.. IV,. Bundary layer potentials in uniformly rectifiable domains, and applications to complex analysis
by:
Mitrea, Dorina.; Mitrea, Irina.; Mitrea, Marius.; SpringerLink (Online service)
(Electronic resources)
Geometric harmonic analysis V = Fredholm theory and finer estimates for integral operators, with applications to boundary problems /
by:
Mitrea, Dorina.; Mitrea, Irina.; Mitrea, Marius.; SpringerLink (Online service)
(Electronic resources)
Boundary value problems for the Stokes system in arbitrary Lipschitz domains /
by:
Mitrea, Marius.; Wright, Matt, (1980-); Société mathématique de France.
(Language materials, printed)
Subjects
Smoothness of functions.
Geometric measure theory.
Clifford algebras.
Divergence theorem.
Integral Transforms and Operational Calculus.
Differential equations, Elliptic.
Real Functions.
Lipschitz spaces.
Mathematics.
Boundary value problems.
Calderón-Zygmund operator.
Fourier Analysis.
Functional Analysis.
Harmonic analysis.
Fourier analysis.
Hardy spaces.
Partial Differential Equations.
Singular integrals.
Quasi-metric spaces.
Measure and Integration.
Boundary layer.