語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Machine learning for econometrics and related topics
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning for econometrics and related topics/ edited by Vladik Kreinovich, Songsak Sriboonchitta, Woraphon Yamaka.
其他作者:
Kreinovich, Vladik.
出版者:
Cham :Springer Nature Switzerland : : 2024.,
面頁冊數:
ix, 499 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Econometrics. -
電子資源:
https://doi.org/10.1007/978-3-031-43601-7
ISBN:
9783031436017
Machine learning for econometrics and related topics
Machine learning for econometrics and related topics
[electronic resource] /edited by Vladik Kreinovich, Songsak Sriboonchitta, Woraphon Yamaka. - Cham :Springer Nature Switzerland :2024. - ix, 499 p. :ill. (some col.), digital ;24 cm. - Studies in systems, decision and control,v. 5082198-4190 ;. - Studies in systems, decision and control ;v. 508..
In the last decades, machine learning techniques - especially techniques of deep learning - led to numerous successes in many application areas, including economics. The use of machine learning in economics is the main focus of this book; however, the book also describes the use of more traditional econometric techniques. Applications include practically all major sectors of economics: agriculture, health (including the impact of Covid-19), manufacturing, trade, transportation, etc. Several papers analyze the effect of age, education, and gender on economy - and, more generally, issues of fairness and discrimination. We hope that this volume will: help practitioners to become better knowledgeable of the state-of-the-art econometric techniques, especially techniques of machine learning, and help researchers to further develop these important research directions. We want to thank all the authors for their contributions and all anonymous referees for their thorough analysis and helpful comments.
ISBN: 9783031436017
Standard No.: 10.1007/978-3-031-43601-7doiSubjects--Topical Terms:
542934
Econometrics.
LC Class. No.: HB139
Dewey Class. No.: 330.015195
Machine learning for econometrics and related topics
LDR
:02085nmm a2200325 a 4500
001
2371557
003
DE-He213
005
20240601125443.0
006
m d
007
cr nn 008maaau
008
241127s2024 sz s 0 eng d
020
$a
9783031436017
$q
(electronic bk.)
020
$a
9783031436000
$q
(paper)
024
7
$a
10.1007/978-3-031-43601-7
$2
doi
035
$a
978-3-031-43601-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HB139
072
7
$a
TGB
$2
bicssc
072
7
$a
TEC009070
$2
bisacsh
072
7
$a
TGB
$2
thema
082
0 4
$a
330.015195
$2
23
090
$a
HB139
$b
.M149 2024
245
0 0
$a
Machine learning for econometrics and related topics
$h
[electronic resource] /
$c
edited by Vladik Kreinovich, Songsak Sriboonchitta, Woraphon Yamaka.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2024.
300
$a
ix, 499 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Studies in systems, decision and control,
$x
2198-4190 ;
$v
v. 508
520
$a
In the last decades, machine learning techniques - especially techniques of deep learning - led to numerous successes in many application areas, including economics. The use of machine learning in economics is the main focus of this book; however, the book also describes the use of more traditional econometric techniques. Applications include practically all major sectors of economics: agriculture, health (including the impact of Covid-19), manufacturing, trade, transportation, etc. Several papers analyze the effect of age, education, and gender on economy - and, more generally, issues of fairness and discrimination. We hope that this volume will: help practitioners to become better knowledgeable of the state-of-the-art econometric techniques, especially techniques of machine learning, and help researchers to further develop these important research directions. We want to thank all the authors for their contributions and all anonymous referees for their thorough analysis and helpful comments.
650
0
$a
Econometrics.
$3
542934
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Mechanical Engineering.
$3
891038
650
2 4
$a
Economics.
$3
517137
650
2 4
$a
Mathematical and Computational Engineering Applications.
$3
3592737
700
1
$a
Kreinovich, Vladik.
$3
1965595
700
1
$a
Sriboonchitta, Songsak.
$3
2056845
700
1
$a
Yamaka, Woraphon.
$3
3486283
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Studies in systems, decision and control ;
$v
v. 508.
$3
3717658
856
4 0
$u
https://doi.org/10.1007/978-3-031-43601-7
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9492511
電子資源
11.線上閱覽_V
電子書
EB HB139
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入
(1)帳號:一般為「身分證號」;外籍生或交換生則為「學號」。 (2)密碼:預設為帳號末四碼。
帳號
.
密碼
.
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)