語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Kaczmarz Methods and Structured Matr...
~
Yaniv, Yotam.
FindBook
Google Book
Amazon
博客來
Kaczmarz Methods and Structured Matrix Decompositions.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Kaczmarz Methods and Structured Matrix Decompositions./
作者:
Yaniv, Yotam.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2024,
面頁冊數:
133 p.
附註:
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
Contained By:
Dissertations Abstracts International85-11B.
標題:
Mathematics. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31297689
ISBN:
9798382599786
Kaczmarz Methods and Structured Matrix Decompositions.
Yaniv, Yotam.
Kaczmarz Methods and Structured Matrix Decompositions.
- Ann Arbor : ProQuest Dissertations & Theses, 2024 - 133 p.
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
Thesis (Ph.D.)--University of California, Los Angeles, 2024.
In this dissertation, we discuss two distinct topics, both of which leverage randomized algorithms in numerical linear algebra. First we study three variants of the Kaczmarz method, a stochastic iterative method for solving linear systems. We propose a variant of the Kaczmarz method that uses additional memory to save on computation. We provide theoretical analysis and experimental results of the method, highlighting a gap in the literature. Additionally, we propose a variant of the Kaczmarz method in the data streaming setting that has an additional heavy ball momentum term. We prove a convergence bound for this method and analyze its merits experimentally given coherent data. Furthermore, we develop a variant of the Kaczmarz method for solving a latent class regression problem. Next we shift gears and discuss structured matrix factorizations. The first matrix factorization that we propose is a stratified non-negative matrix factorization. The aim of this method is to provide unsupervised dimensionality reduction on non-negative data that may be distributed across different locations. We prove a convergence bound for this method and analyze its performance on synthetic text, image and tabular data. Finally, we propose a hierarchically semi-separable matrix factorization method that uses random matrix sketching. 
ISBN: 9798382599786Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Linear algebra
Kaczmarz Methods and Structured Matrix Decompositions.
LDR
:02529nmm a2200397 4500
001
2398253
005
20240812064415.5
006
m o d
007
cr#unu||||||||
008
251215s2024 ||||||||||||||||| ||eng d
020
$a
9798382599786
035
$a
(MiAaPQ)AAI31297689
035
$a
AAI31297689
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Yaniv, Yotam.
$3
3768169
245
1 0
$a
Kaczmarz Methods and Structured Matrix Decompositions.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2024
300
$a
133 p.
500
$a
Source: Dissertations Abstracts International, Volume: 85-11, Section: B.
500
$a
Advisor: Bertozzi, Andrea;Hunter, Deanna M.
502
$a
Thesis (Ph.D.)--University of California, Los Angeles, 2024.
520
$a
In this dissertation, we discuss two distinct topics, both of which leverage randomized algorithms in numerical linear algebra. First we study three variants of the Kaczmarz method, a stochastic iterative method for solving linear systems. We propose a variant of the Kaczmarz method that uses additional memory to save on computation. We provide theoretical analysis and experimental results of the method, highlighting a gap in the literature. Additionally, we propose a variant of the Kaczmarz method in the data streaming setting that has an additional heavy ball momentum term. We prove a convergence bound for this method and analyze its merits experimentally given coherent data. Furthermore, we develop a variant of the Kaczmarz method for solving a latent class regression problem. Next we shift gears and discuss structured matrix factorizations. The first matrix factorization that we propose is a stratified non-negative matrix factorization. The aim of this method is to provide unsupervised dimensionality reduction on non-negative data that may be distributed across different locations. We prove a convergence bound for this method and analyze its performance on synthetic text, image and tabular data. Finally, we propose a hierarchically semi-separable matrix factorization method that uses random matrix sketching. 
590
$a
School code: 0031.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
650
4
$a
Applied mathematics.
$3
2122814
653
$a
Linear algebra
653
$a
Matrix factorizations
653
$a
Theoretical analysis
653
$a
Kaczmarz method
653
$a
Machine learning
690
$a
0405
690
$a
0642
690
$a
0800
690
$a
0364
710
2
$a
University of California, Los Angeles.
$b
Mathematics 0540.
$3
2096468
773
0
$t
Dissertations Abstracts International
$g
85-11B.
790
$a
0031
791
$a
Ph.D.
792
$a
2024
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=31297689
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9506573
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入
(1)帳號:一般為「身分證號」;外籍生或交換生則為「學號」。 (2)密碼:預設為帳號末四碼。
帳號
.
密碼
.
請在此電腦上記得個人資料
取消
忘記密碼? (請注意!您必須已在系統登記E-mail信箱方能使用。)